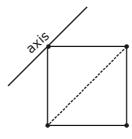


QUESTION PAPER WITH SOLUTION

PHYSICS _ 6 Sep. _ SHIFT - 1

H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |⊠: info@motion.ac.in

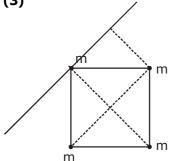

Motion

JEE MAIN 2020

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है खास

Four point masses, each of mass m, are fixed at the corners of a square of side I. The square is rotating 1. with angular frequency ω, about an axis passing through one of the corners of the square and parallel to its diagonal, as shown in the figure. The angular momentum of the square about this axis is: प्रत्येक m द्रव्यमान के चार बिन्दू द्रव्यमान l भुजा के एक वर्ग के कोनों पर स्थिर किये गये हैं। वर्ग चित्रानुसार इसके विकर्ण के समानान्तर तथा वर्ग के एक कोने से गूजरने वाले एक अक्ष के परितः ω कोणीय आवित से घुमाया जाता है। इस अक्ष के परितः वर्ग का कोणीय संवेग है:


(1) 4 ml² ω

(2) 2 ml² ω

(3) $3 \text{ ml}^2 \omega$

(4) $ml^2\omega$

Sol. (3)

 $L = I\omega$

$$I = m \bigg(\frac{a}{\sqrt{2}}\bigg)^2 \ x \ 2 + m \bigg(\sqrt{2}a\bigg)^2$$

 $= ma^2 + 2ma^2$

 $\therefore L = I\omega = 3ml^2\omega$

(a = |)

- 2. A screw gauge has 50 divisions on its circular scale. The circular scale is 4 units ahead of the pitch scale marking, prior to use. Upon one complete rotation of the circular scale, a displacement of 0.5mm is noticed on the pitch scale. The nature of zero error involved and the least count of the screw gauge, are respectively:
 - (1) Positive, 0.1 mm

(2) Positive, 0.1 μm

(3) Positive, 10 μm

(4) Negative, 2 μm

एक स्क्र गेज इसके वतीय पैमाने पर 50 विभाग रखता है। उपयोग करने से पहले, वतीय पैमाना पिच पैमाने अंकन से 4 इकाई आगे (ahead) है। वतीय पैमाने के एक पूर्ण घूर्णन पर, 0.5mm का विस्थापन पिच पैमाने पर देखा जाता है। सम्मिलित शून्य त्रृटि की प्रकृति तथा स्क्रू गेज का अल्पतमांक क्रमशः है:

(1) धनात्मक, 0.1 mm

(2) धनात्मक, 0.1 µm

(3) धनात्मक, 10 um

(4) ऋणात्मक, 2 µm

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

Sol. (3)

$$=L.C = \frac{0.5}{50}mm = 1 \times 10^{-5}m = 10\mu m$$

3. An electron, a doubly ionized helium ion (He⁺⁺) and a proton are having the same kinetic energy. The relation between their respective de-Broglie wavelengths $\lambda_{e'}$, $\lambda_{He^{++}}$ and λ_{D} is : एक इलेक्ट्रॉन, एक द्वि आयनित हीलियम आयन (He++) तथा एक प्रोटोन समान गतिज ऊर्जा रखते है। उनकी सम्बन्धित डी–ब्रोग्ली

तरंगदैर्ध्य λ_{e} , $\lambda_{He^{++}}$ तथा λ_{p} के बीच सम्बन्ध है :

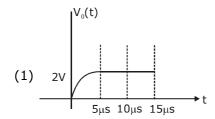
(1)
$$\lambda_{\rm e} > \lambda_{\rm P} > \lambda_{\rm He^{++}}$$

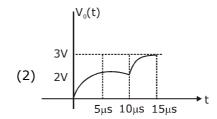
(2)
$$\lambda_{\rm e} > \lambda_{\rm He^{++}} > \lambda_{\rm P}$$

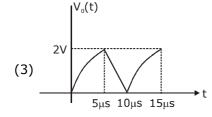
(3)
$$\lambda_{\rm e} < \lambda_{\rm P} < \lambda_{\rm He^{++}}$$

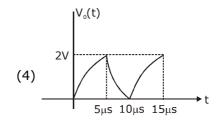
(4)
$$\lambda_{p} < \lambda_{Hp^{++}} = \lambda_{p}$$

Sol.


$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mK \cdot E}} \qquad \begin{array}{c} C & 2 & 27 \\ \gamma = \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{array}$$


$$\begin{aligned} \mathbf{m}_{\mathrm{He}} &> \mathbf{m}_{\mathrm{p}} > \mathbf{m}_{\mathrm{e}} \\ \lambda_{\mathrm{He}} &< \lambda_{\mathrm{p}} < \lambda_{\mathrm{e}} \end{aligned}$$


4. For the given input voltage waveform $V_{in}(t)$, the output voltage waveform $V_{o}(t)$, across the capacitor is correctly depicted by:


दिये गये निवेशी वोल्टता तरंगरूप $V_{in}(t)$ के लिए, संधारित्र के सिरों पर निर्गत वोल्टता तरंगरूप $V_{o}(t)$ निम्न द्वारा सही रूप से वर्णित है:

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

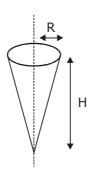
Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

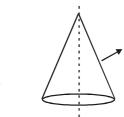
◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION JEE MAIN 2020

ANSWER KEY


हमारा विश्वास... हर एक विद्यार्थी है खास

Sol. (2)


Answer is (2) because capacitor is charging then discharging then again charging. But during discharging not possible to discharge 100%.

5. Shown in the figure is a hollow icecream cone (it is open at the top). If its mass is M, radius of its top, R and height, H, then its moment of inertia about its axis is:

चित्रानुसार एक खोखला आईसक्रीम शंकु (यह शिखर पर खुला है।) है। यदि इसका द्रव्यमान M है, इसके शिखर की त्रिज्या R तथा ऊँचाई H है, तब इसके अक्ष के परितः इसका जड़त्वाघूर्ण है:

Sol.

Pichka do disk Banege

6. A satellite is in an elliptical orbit around a planet P. It is observed that the velocity of the satellite when it is farthest from the planet is 6 times less than that when it is closest to the planet. The ratio of distances between the satellite and the planet at closest and farthest points is:

एक उपग्रह एक ग्रह P के चारों ओर एक दीर्घवत्ताकार कक्षा में हैं। यह देखा जाता है कि ग्रह से दूरतम होने पर उपग्रह का वेग, जब यह ग्रह के समीपतम होता है कि तुलना में 6 गुना कम है। समीपतम तथ दूरतम बिन्दुओं पर उपग्रह तथा ग्रह के बीच दूरियों का अनुपात है:

(1) 1 : 2

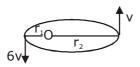
(2)1:3

(3)1:6

(4)3:4

CRASH COURSE

FOR JEE ADVANCED 2020


FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

Sol. (3)

 $m \cdot 6vr_1 = m \cdot vr_2$

 $6r_1 = r_2$

 $\Rightarrow \frac{r_1}{r_2} = \frac{1}{6}$

7. You are given that Mass of ${}_{3}^{7}Li = 7.0160u$,

Mass of ${}_{2}^{4}$ He = 4.0026u

and Mass of ${}_{1}^{1}H = 1.0079u$.

When 20 g of ${}_{3}^{7}$ Li is converted into ${}_{2}^{4}$ He by proton capture, the energy liberated, (in kWh), is: [Mass of nucleon = 1 GeV/c^2]

आपको दिया गया है कि ${}^{7}_{3}$ Li का द्रव्यमान = 7.0160u

⁴He का द्रव्यमान = 4.0026u

तथा ¹H का द्रव्यमान = 1.0079u

जब रॄLi का 20 g , प्रोटोन पकड़ (capture) द्वारा रॄHe में बदला जाता है, तब मुक्त ऊर्जा (kWh में), है: [न्यूक्लिओन का द्रव्यमान $= 1 \text{ GeV/c}^2$

 $(1) 6.82 \times 10^{5}$

 $(2) 4.5 \times 10^5$ $(3) 8 \times 10^6$ $(4) 1.33 \times 10^6$

Sol. (4)

 $_{_{3}}^{7}\text{Li} + _{_{1}}\text{e}^{_{+}} \rightarrow 2_{_{2}}^{4}\text{He}$

 $\Delta m \Rightarrow [m_{Li} + m_{H}] - 2 [M_{He}]$

 $\rightarrow \Delta m = (7.0160 + 1.0079) - 2 \times 4.0003$

= 0.0187

Energy released in 1 reaction $\Rightarrow \Delta mc^2$

In use of 7.016 u Li energy is ∆mc²

In use of 1gm Li energy is $\frac{\Delta mc^2}{m_{Li}}$

In use of 20gm energy is $\Rightarrow \frac{\Delta mc^2}{m_{Li}} \times 20gm$

 $\frac{0.0187 \times 931.5 \times 10^{6} \times 1.6 \times 10^{-19} \times \frac{20}{7} \times 6.023 \times 10^{23}}{36 \times 10^{5}} = 1.33 \times 10^{6}$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION JEE MAIN 2020

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

If the potential energy between two molecules is given by $U = -\frac{A}{r^6} + \frac{B}{r^{12}}$, then at equilibrium, 8. separation between molecules, and the potential energy are:

यदि दो अणुओं के बीच स्थितिज ऊर्जा $U = -\frac{A}{r^6} + \frac{B}{r^{12}}$ द्वारा दी जाती है, तब साम्यावस्था पर, अणुओं के बीच दूरी तथा स्थितिज ऊर्जा है:

$$(1) \left(\frac{2B}{A}\right)^{1/6}, -\frac{A^2}{4B} \qquad (2) \left(\frac{2B}{A}\right)^{1/6}, -\frac{A^2}{2B} \qquad (3) \left(\frac{B}{A}\right)^{1/6}, 0 \qquad \qquad (4) \left(\frac{B}{2A}\right)^{1/6}, -\frac{A^2}{2B}$$

(2)
$$\left(\frac{2B}{A}\right)^{1/6}$$
, $-\frac{A^2}{2B}$

(3)
$$\left(\frac{B}{A}\right)^{1/6}$$
, 0

(4)
$$\left(\frac{B}{2A}\right)^{1/6}$$
, $-\frac{A^2}{2B}$

Sol.

$$F = \frac{-dU}{dr} = \frac{-d}{dr} \left(-Ar^{-6} + Br^{-12} \right)$$

for equation F = 0

$$=\frac{A(-6)}{r^7}+\frac{B\cdot 12}{r^{13}}=0$$

$$\frac{12B}{r^{13}}=\frac{6A}{r^7}$$

$$r = \left(\frac{2B}{A}\right)^{1/6}$$

$$U = \frac{-A}{\frac{2B}{A}} + \frac{B}{\left(\frac{2B}{A}\right)^2}$$

$$=\frac{-A^2}{2B}+\frac{A^2}{4B}=\frac{-A^2}{4B}$$

9. A clock has a continuously moving second's hand of 0.1 m length. The average acceleration of the tip of the hand (in units of ms⁻²) is of the order of:

एक घड़ी की 0.1 m लम्बाई की सैकण्ड की सूई निरन्तर गतिमान हैं। सूई के सिरें का औसत त्वरण (ms-2 की इकाई में) निम्न कोटी का है:

$$(3) 10^{-2}$$

$$(4) 10^{-4}$$

Sol. **(1)**

$$a = \frac{V^2}{R}$$

$$a = \frac{v^2}{R} \qquad \qquad V = \frac{2\pi R}{60}$$

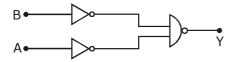
$$=\frac{4\pi^2\cdot R^2}{\left(60\right)^2\,R}=\frac{4\pi^2R}{\left(60\right)^2}=\frac{4}{\left(60\right)^2}\times 10\times 0.1\,\approx\,10^{-3}$$

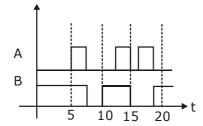
CRASH COURSE

FOR JEE ADVANCED 2020

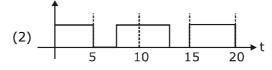
FREE Online Lectures Available on You Tube

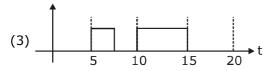
Go Premium at ₹ 1100

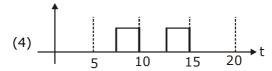

◆ Doubt Support ◆ Advanced Level Test Access

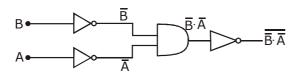

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Motion


10. Identify the correct output signal Y in the given combination of gates (as shown) for the given inputs A and B.


दिये गये निवेशीयों A तथा B के लिए दिखायेनुसार द्वारों के एक दिये गये संयोजनो में सही निर्गत संकेत Y को पहचानिये -





Sol. None of the option is correct

$$\overline{=}$$
 = = A + B = A + B

- An electron is moving along +x direction with a velocity of 6×10^6 ms⁻¹. It enters a region of uniform electric field of 300 V/cm pointing along +y direction. The magnitude and direction of the magnetic field set up in this region such that the electron keeps moving along the x direction will be:
 - (1) 3×10^{-4} T, along -z direction
- (2) 5×10^{-3} T, along -z direction
- (3) 5×10^{-3} T, along +z direction
- (4) 3×10^{-4} T, along +z direction

एक इलेक्ट्रॉन 6×106 ms⁻¹ के वेग से +x दिशा के अनुदिश गतिमान है। यह +y दिशा के अनुदिश निर्देशित 300 V/cm के समरूप विद्युत क्षेत्र के एक क्षेत्र में प्रवेश करता है। इस क्षेत्र में स्थापित चुम्बकीय क्षेत्र का परिमाण तथा दिशा इस प्रकार है कि इलेक्ट्रॉन x दिशा के अनुदिश गति जारी रखेगा, होगी —

- (1) 3 × 10⁻⁴ T, -z दिशा के अनुदिश
- (2) 5 × 10⁻³ T, −z दिशा के अनुदिश
- (3) 5 × 10⁻³ T, +z दिशा के अनुदिश
- (4) 3 × 10⁻⁴ T, +z दिशा के अनुदिश

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

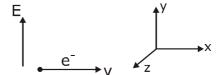
MOTION JEE MAIN 2020

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है खास

Sol. (3)

 \vec{B} must be in +z axis.



$$qE = qVB$$

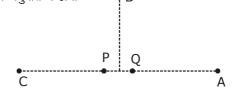
$$E = 300 \frac{v}{10^{-2} m}$$

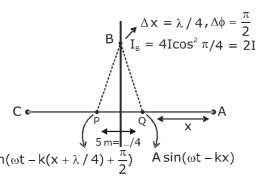
= 30000 v/m

$$B = \frac{E}{V} = \frac{3 \times 10^4}{6 \times 10^6} = 5 \times 10^{-3} T$$

12. In the figure below, P and Q are two equally intense coherent sources emitting radiation of wavelength 20 m. The separation between P and Q is 5 m and the phase of P is ahead of that of Q by 90°. A, B and C are three distinct points of observation, each equidistant from the midpoint of PQ. The intensities of radiation at A, B, C will be in the ratio:

नीचे चित्र में, P तथा Q दो समान रूप से तीव्र (intense) कलासंबद्ध स्त्रोत है, जो 20 m तरंगदैर्ध्य के विकिरण उत्सर्जित कर रहे है। P तथा Q के बीच दूरी 5 m है तथा P की कला Q की कला से 90° से आगे है। A, B तथा C प्रेक्षण के तीन अलग (distinct) बिन्दु है, प्रत्येक PQ के मध्य बिन्दु से समान दूरी पर है। A, B, C पर विकिरण की तीव्रतायें निम्न अनुपात में होगी-• B


(1)4:1:0


(2) 2 : 1 : 0

(3) 0 : 1 : 2

(4) 0 : 1 : 4

Sol. (2)

A sin(
$$\omega t - kx - \frac{2\pi}{\lambda} \times \frac{\lambda}{4} + \frac{\pi}{2}$$
)

A $sin(\omega t - kx)$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

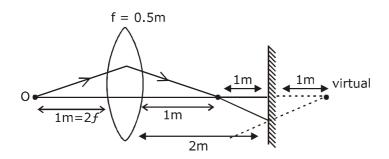
$$\Delta X = \frac{\lambda}{2}$$
$$\Delta \phi = \pi$$

 \therefore at A $\Delta x_{\text{effective}}$ = 0 or phase difference = 0

∴ $I_A = 4I$ {Same logic as A point but opposits}

- 13. A point like object is placed at a distance of 1 m in front of a convex lens of focal length 0.5 m. A plane mirror is placed at a distance of 2 m behind the lens. The position and nature of the final image formed by the system is:
 - (1) 1 m from the mirror, virtual
- (2) 2.6 m from the mirror, virtual
- (3) 1 m from the mirror, real
- (4) 2.6 m from the mirror, real

एक बिन्दु सदश्य वस्तु 0.5 m फोकस दूरी के एक उत्तल लेंस के सामने 1 m की दूरी पर रखी जाती है। एक समतल दर्पण लेंस के पीछे 2 m की दूरी पर रखा जाता है। निकाय द्वारा निर्मित अंतिम प्रतिबिम्ब की स्थिति तथा प्रकृति है-


(1) दर्पण से 1 m, आभासी

(2) दर्पण से 2.6 m, आभासी

(3) दर्पण से 1 m, वास्तविक

(4) दर्पण से 2.6 m, वास्तविक

Sol. (1, 2 Both are correct)

for III^{rd} Refraction, u = -3

$$\frac{1}{V}+\frac{1}{3}=\frac{2}{1}$$

$$V = \frac{3}{5} = 0.6$$

from mirror = 2.6m

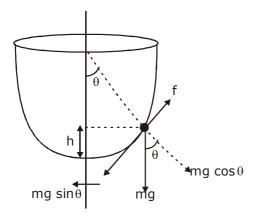
14. An insect is at the bottom of a hemispherical ditch of radius 1 m. It crawls up the ditch but starts slipping after it is at height h from the bottom. If the coefficient of friction between the ground and the insect is 0.75, then h is: $(g = 10 \text{ ms}^{-2})$

एक कीड़ा 1 m त्रिज्या की एक अर्धगोलीय नाली (ditch) की तली पर है। यह नाली के ऊपर रेंगता है लेकिन तली से ऊँचाई h होने के बाद फिसलने लगता है। यदि धरातल तथा कीड़े के बीच घर्षण गुणांक 0.75 है, तब h है (g = 10 ms-2)

- (1) 0.45 m
- (2) 0.60 m
- (3) 0.20 m
- (4) 0.80 m

CRASH COURSE

FOR JEE ADVANCED 2020


FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Sol. (3)

 $f = mg \sin \theta$

 $f = \mu mg \cos \theta$

 μ mg cos θ = mg sin θ

 $tan\theta = \mu$

 $\tan \theta = \frac{3}{4}$

 $\cos \theta = \frac{4}{\sqrt{16+9}} = \frac{4}{5}$

 $h = 1(1 - \cos \theta) = 1 - \frac{4}{5} = \frac{1}{5}$

 $h = \frac{1}{5} = 0.2m$

15. Molecules of an ideal gas are known to have three translational degrees of freedom and two rotational degrees of freedom. The gas is maintained at a temperature of T. The total internal

energy, U of a mole of this gas, and the value of $\gamma \left(= \frac{C_p}{C_v} \right)$ are given, respectively by:

(1) U =
$$\frac{5}{2}$$
RT and $\gamma = \frac{7}{5}$

(2)
$$U = 5RT \text{ and } \gamma = \frac{6}{5}$$

(3)
$$U = 5RT \text{ and } \gamma = \frac{7}{5}$$

(4)
$$U = \frac{5}{2}RT$$
 and $\gamma = \frac{6}{5}$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access **♦** Live Test Paper Discussion **♦** Final Revision Exercises

MOTION[®]

एक आदर्श गैस के अणु तीन स्थानान्तरण स्वतन्त्रता की कोटी तथा दो घूर्णन स्वतन्त्रता की कोटी रखने के लिए जाने जाते है। गैस T ताप पर बनाये रखी जाती है। इस गैस के एक मोल की कुल आन्तरिक ऊर्जा U तथा $\gamma \left(= \frac{C_p}{C_{..}} \right)$ का मान क्रमशः निम्न द्वारा दिया जाता है।

(1) U =
$$\frac{5}{2}$$
RT ਰਥਾ $\gamma = \frac{7}{5}$

(2) U=5RT ਰथा
$$\gamma = \frac{6}{5}$$

(3) U=5RT ਰथा
$$\gamma = \frac{7}{5}$$

(4)
$$U = \frac{5}{2}RT$$
 तथा $\gamma = \frac{6}{5}$

Sol. (1)

$$U = \frac{f}{2} nRT = \frac{5}{2} nRT \begin{pmatrix} C_p - C_v = R \\ C_v = \frac{f}{2} R \end{pmatrix}, \quad \gamma = \frac{C_p}{C_d} \Rightarrow 1 + \frac{2}{f} = 1 + \frac{2}{5} = \frac{7}{5}$$

16. An object of mass m is suspended at the end of a massless wire of length L and area of crosssection A. Young modulus of the material of the wire is Y. If the mass is pulled down slightly its frequency of oscillation along the vertical direction is:

m द्रव्यमान की एक वस्तू, A अनुप्रस्थ काट क्षेत्रफल तथा L लम्बाई के एक द्रव्यमानरहीत तार के सिरे से लटकाई जाती है। तार के पदार्थ का यंग मापांक Y है। यदि द्रव्यमान हल्के से नीचे खिंच जाता है तब ऊर्ध्वाधर दिशा के अनुदिश इसके दोलन की आवत्ति है-

(1)
$$f = \frac{1}{2\pi} \sqrt{\frac{YA}{mL}}$$
 (2) $f = \frac{1}{2\pi} \sqrt{\frac{mL}{YA}}$ (3) $f = \frac{1}{2\pi} \sqrt{\frac{YL}{mA}}$ (4) $f = \frac{1}{2\pi} \sqrt{\frac{mA}{YL}}$

(2)
$$f = \frac{1}{2\pi} \sqrt{\frac{mL}{YA}}$$

(3)
$$f = \frac{1}{2\pi} \sqrt{\frac{YL}{mA}}$$

(4)
$$f = \frac{1}{2\pi} \sqrt{\frac{mA}{YI}}$$

Sol. **(1)**

$$Y = \frac{F/A}{\Delta L/L}$$

$$Y = \frac{FL}{A\Delta L}$$

$$F = \frac{YA\Delta L}{L}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{YA}{Im}}$$

$$\left(\frac{yA}{L} = k\right)$$

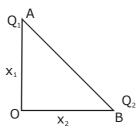
$$f = \frac{1}{2\pi} \sqrt{\frac{YA}{Im}}$$
 $\left(\frac{yA}{L} = k\right)$ $\therefore T = 2\pi \sqrt{\frac{m}{k}}$

17. An AC circuit has $R = 100 \Omega$, $C = 2 \mu F$ and L = 80 mH, connected in series. The quality factor of the circuit is:

एक A C परिपथ में R= 100Ω , C= 2μ F तथा L = 80 mH है, जो श्रेणी में जुड़े है। परिपथ का विशेषता गुणांक (quality factor) है :

- (1)20
- (2)2
- (3) 0.5
- (4)400

Sol. (2)

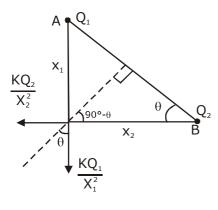

$$Q = \frac{\omega L}{R}$$

$$\omega = \frac{1}{\sqrt{LC}}$$

$$=\frac{L}{R\sqrt{LC}}=\frac{1}{R}\sqrt{\frac{L}{C}}$$

$$=\frac{1}{100}\sqrt{\frac{80\times10^{-3}}{2\times10^{-6}}}=2$$

Charges Q_1 and Q_2 are at points A and B of a right angle triangle OAB (see figure). The resultant 18. electric field at point O is perpendicular to the hypotenuse, then Q_1/Q_2 is proportional to: आवेश Q1 तथा Q2 चित्रानुसार एक समकोण त्रिभुज OAB के A तथा B बिन्दुओं पर है। बिन्दु O पर परिणामी विद्युत क्षेत्र कर्ण के लम्बवत् है, तब Q_1/Q_2 निम्न के समानुपाती है—

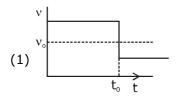


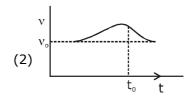
- (1) $\frac{x_2}{x_1}$
- (2) $\frac{x_2^2}{x_1^2}$

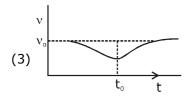
FREE Online Lectures Available on You Tube

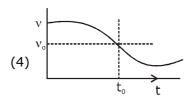
 Doubt Support ◆ Advanced Level Test Access **♦** Live Test Paper Discussion **♦** Final Revision Exercises

Sol. (4)


$$\tan \theta = \frac{kQ_2 / x_2^2}{kQ_1 / x_1^2} = \frac{x_1}{x_2}$$


$$\frac{Q_2 \cdot X_1^2}{Q_1 \cdot X_2^2} = \frac{X_1}{X_2}$$

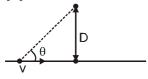

$$\frac{Q_1}{Q_2} = \frac{x_1}{x_2}$$


19. A sound source S is moving along a straight track with speed v, and is emitting, sound of frequency v_{o} (see figure). An observer is standing at a finite distance, at the point O, from the track. The time variation of frequency heard by the observer is best represented by: (t_0 represents the instant when the distance between the source and observer is minimum)

एक ध्वनि स्रोत S, v चाल से एक सरल पथ के अनुदिश गतिमान है तथा चित्रानुसार vo आवित्त की ध्वनि उत्सर्जित कर रहा है। एक प्रेक्षक पथ से O बिन्दु पर एक निश्चित दूरी पर खड़ा है। प्रेक्षक द्वारा सुनी आवत्ति के समय परिवर्तन का सर्वोत्तम निरूपण है: (t, क्षण को निरूपित करता है, जब स्रोत व प्रेक्षक के बीच दूरी न्यूनतम है।)

CRASH COURSE

FOR JEE ADVANCED 2020


FREE Online Lectures Available on You Tube

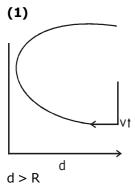
Go Premium at ₹ 1100

- ◆ Doubt Support ◆ Advanced Level Test Access
- ◆ Live Test Paper Discussion ◆ Final Revision Exercises

Sol.

(4)

$$f_{observed} \Rightarrow \left(\frac{V_{sound}}{V_{sound} - v \cos \theta} \right) f_0$$


initially θ will be less $\Rightarrow \cos\theta$ more

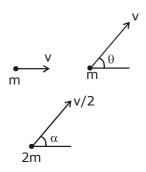
- \therefore $\mathbf{f}_{\text{observed}}$ more, then it will decrease.
- ∴ Ans. 4
- A particle of charge q and mass m is moving with a velocity $-v\hat{i}$ (v \neq 0) towards a large screen 20. placed in the Y-Z plane at a distance d. If there is a magnetic field $\vec{B} = B_0 \hat{k}$, the minimum value of v for which the particle will not hit the screen is: m द्रव्यमान तथा q आवेश का एक कण, d दूरी पर Y-Z तल में रखे एक बड़े पर्दे की ओर -vî (v≠0) वेग से गतिमान है। यदि एक

चुम्बकीय क्षेत्र $\vec{B} = B_0 \hat{k}$ है, तब v का न्यूनतम मान जिसके लिए कण पर्दे से नहीं टकरायेगा, है :

- $(1) \frac{qdB_0}{m}$
- (2) $\frac{\text{qdB}_0}{3\text{m}}$ (3) $\frac{2\text{qdB}_0}{\text{m}}$ (4) $\frac{\text{qdB}_0}{2\text{m}}$

Sol.

$$d>\frac{m\nu}{qB_0}$$


$$v < \frac{qB_0d}{m}$$

Motion

21. Two bodies of the same mass are moving with the same speed, but in different directions in a plane. They have a completely inelastic collision and move together thereafter with a final speed which is half of their initial speed. The angle between the initial velocities of the two bodies (in degree) is ______.

समान द्रव्यमान की दो वस्तुएँ एक तल में विभिन्न दिशाओं में लेकिन समान चाल से गतिमान हैं। उनकी पूर्णः अप्रत्यास्थ टक्कर होती है तथा इसके बाद वे अंतिम चाल से एक साथ गति करती है, जो उनकी प्रारंभिक चाल की आधी है। दोनों वस्तुओं के प्रारंभिक वेगों के बीच कोण (डिग्री में) हैं ______।

21. 120

∴ In Horizontal Direction By Momentum conservation.

$$mv + mv\cos\theta = 2m\frac{v}{2}\cos\alpha$$

 $1 + \cos \theta = \cos \alpha$ (1) In vertical direction

By Momentum conservation.

$$0 + mv \sin \theta = 2m \frac{v}{2} \sin \alpha$$

 $\sin\theta = \sin\alpha$

$$1 + \cos \theta = \sqrt{1 - \sin^2 \theta}$$

 $\theta = 120^{\circ}$

22. Suppose that intensity of a laser is $\left(\frac{315}{\pi}\right)$ W/m². The rms electric field, in units of V/m associated with this source is close to the nearest integer is _____. ($\epsilon_0 = 8.86 \times 10^{-12} \, \text{C}^2 \text{Nm}^{-2}$; c = 3 × 10⁸ ms⁻¹)

माना कि एक लेजर की तीव्रता $\left(\frac{315}{\pi}\right)$ W/m² है। इस स्रोत के साथ संबद्ध V/m की इकाई में वर्ग माध्य मूल विद्युत क्षेत्र समीपतम पूर्णांक के समीप है ______।

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
Live Test Paper Discussion ◆ Final Revision Exercises

Sol. 275

$$I = \frac{1}{2} \, \epsilon_0 C \, \, E_{\text{rms}}^2$$

$$\frac{3.15}{\pi} = \frac{1}{2} \times 8.86 \times 10^{-12} \times 3 \times 10^8 \times E_{rms}^2$$

- 23. The density of a solid metal sphere is determined by measuring its mass and its diameter. The maximum error in the density of the sphere is $\left(\frac{x}{100}\right)\%$. If the relative errors in measuring the mass and the diameter are 6.0% and 1.5% respectively, the value of x is_ एक ठोस धात्विक गोले का घनत्व, इसके द्रव्यमान व इसके व्यास को मापकर निर्धारित किया जाता है। गोले के घनत्व में अधिकतम त्रृटि $\left(\frac{x}{100}\right)$ % है। यदि द्रव्यमान तथा व्यास को मापने में सापेक्षिक त्रुटियाँ क्रमशः 6.0% तथा 1.5% है। तब x का मान है—
- 1050 Sol.

$$\rho = \frac{m}{\frac{4}{3} \pi \left(\frac{d}{2}\right)^3}$$

$$\rho = k \cdot \frac{m}{d^3}$$

$$log \ \rho = log \ k + log \ m - 3log \ d$$

diff.

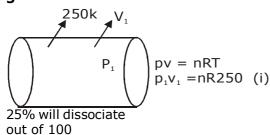
$$\frac{d\rho}{\rho} = \frac{dm}{m} - 3 \cdot \frac{dd}{d}$$

$$= 6.0 + 3 \times 1.5 = 10.5\%$$

$$= x = 1050$$

24. Initially a gas of diatomic molecules is contained in a cylinder of volume V, at a pressure P, and temperature 250 K. Assuming that 25% of the molecules get dissociated causing a change in number of moles. The pressure of the resulting gas at temperature 2000 K, when contained in a volume $2V_1$ is given by P_2 . The ratio P_2/P_1 is _____ प्रारंभ में द्विपरमाणुक अणुओं की एक गैस, 250 K ताप तथा p, दाब पर V, आयतन के एक बेलन में धारण की जाती है। माना कि 25% अणु विघटित हो जाते हैं, जिससे मोलों की संख्या में परिवर्तन होता है। 2000 K ताप पर परिणामी गैस का दाब, जब 2V, आयतन में रखी जाती है, P2 द्वारा दिया जाता है। P2/P1 का अनुपात है _____।

CRASH COURSE FOR JEE ADVANCED 2020


FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

Sol. 5

molecules will remain same

 $\frac{n}{4}$ mole become $\rightarrow \frac{n}{2}$

:. Total molecules used

$$\rightarrow \frac{3n}{4} + \frac{n}{2} = \frac{5n}{4}$$

$$P_2 2V_1 = \frac{5n}{4} \cdot R \cdot 2000 - (ii)$$

$$\frac{2p_{_{2}}v_{_{1}}}{p_{_{1}}v_{_{1}}} = \frac{5nR \times 2000}{4nR \times 250}$$

$$\frac{P_2}{P_1} = 5$$

25. A part of a complete circuit is shown in the figure. At some instant, the value of current I is 1A and it is decreasing at a rate of 10^2 A s⁻¹. The value of the potential difference $V_p - V_{o}$, (in volts) at

एक पूर्ण परिपथ का एक भाग चित्रानुसार है। किसी क्षण पर, धारा I का मान 1A है तथा यह 10² A s-1 की दर से घट रही है। उस

Sol.

$$V_{P} \xrightarrow{L = 50 \text{ mH}} \frac{1}{10000} - \frac{2\Omega}{10000} Q$$

$$V_{P} + L \cdot \frac{di}{dt} - 30 + 2i = V_{Q}$$

$$V_P + 50 \times 10^{-3} (-10^2) - 30 + 2 \times 1 = V_Q$$

$$V_p - V_Q = 35 - 2 = 33$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Admission **OPEN**

जब इन्होने पूरा किया अपना सपना तो आप भी पा सकते है लक्ष्य अपना

JEE MAIN RESULT 2019

KOTA'S PIONEER IN DIGITAL EDUCATION 1,95,00,000+ viewers | 72,67,900+ viewing hours | 2,11,000+ Subscribers

SERVICES	SILVER	GOLD	PLATINUM
Classroom Lectures (VOD)			
Live interaction	NA		
Doubt Support	NA		
Academic & Technical Support	NA		
Complete access to all content	NA		
Classroom Study Material	NA		
Exercise Sheets	NA		
Recorded Video Solutions	NA		
Online Test Series	NA		
Revision Material	NA		
Upgrade to Regular Classroom program	Chargeable	Chargeable	Free
Physical Classroom	NA	NA	
Computer Based Test	NA	NA	
Student Performance Report	NA	NA	
Workshop & Camp	NA	NA	
Motion Solution Lab- Supervised learning and instant doubt clearance	NA	NA	
Personalised guidance and mentoring	NA	NA	

FEE STRUCTURE				
CLASS	SILVER	GOLD	PLATINUM	
7th/8th	FREE	₹ 12,000	₹ 35,000	
9th/10th	FREE	₹ 15,000	₹ 40,000	
11th	FREE	₹ 29,999	₹ 49,999	
12th	FREE	₹ 39,999	₹ 54,999	
12th Pass	FREE	₹ 39,999	₹ 59,999	

- + Student Kit will be provided at extra cost to Platinum Student.
- SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures.
- GOLD (Online) can be converted to regular classroom (Any MOTION Center) by paying difference amount after lockdown.
- PLATINUM (Online + Regular) can be converted to regular classroom (Any MOTION Center) without any cost after lockdown.

New Batch Starting from:

16 & 23 September 2020

Zero Cost EMI Available

