QUESTION PAPER WITH SOLUTION PHYSICS _ 5 Sep. _ SHIFT - 2 H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |⊠: info@motion.ac.in - A ring is hung on a nail. It can oscillate, without slipping or sliding (i) in its plane with a time period T₁ 1. and, (ii) back and forth in a direction perpendicular to its plane, with a period T_2 . The ratio $\frac{I_1}{T_2}$ will be: एक वलय एक कील पर लटकी है। यह (i), T_1 आवतकाल से इसके तल में तथा (ii), T_2 आवत काल से इसके तल की लम्बवत दिशा में आगे पीछे, बिना फिसले दोलित हो सकती है। अनुपात $\frac{T_1}{T_2}$ होगा : - $(1) \frac{3}{\sqrt{2}}$ - (2) $\frac{\sqrt{2}}{2}$ - (3) $\frac{2}{\sqrt{3}}$ - $(4) \frac{2}{3}$ SOI. $$T_1 = 2\pi \sqrt{\frac{(mR^2 + mR^2)}{mgR}}$$ $$T_1 = 2\pi \sqrt{\frac{2R}{g}}$$ $$T_2 = 2\pi \sqrt{\frac{I}{mgL_{cm}}}$$ $$T_2 = 2\pi \sqrt{\frac{3mR^2/2}{mgR}} = 2\pi \sqrt{\frac{3R}{2g}}$$ $$\frac{T_1}{T_2} = \sqrt{\frac{4}{3}} = \frac{2}{\sqrt{3}}$$ 2. The correct match between the entries in column I and column II are: Radiation - (a) Microwave - (b) Gamma rays - (c) A.M. radio waves - (d) X-rays #### Wavelength - (i) 100 m - (ii) 10⁻¹⁵ m - (iii) 10⁻¹⁰ m - (iv) 10⁻³ m - स्तम्भ I तथा स्तम्भ II में प्रविष्टियों के बीच सही मिलान है: Π तरंगदैध्र्य - विकिरण (a) सूक्ष्मतरंगें - (i) 100 m (ii) 10⁻¹⁵ m - (b) गामा किरणें (c) A.M. रेडियों तरंगे - (iii) 10⁻¹⁰ m (d) X-किरणें - (iv) 10⁻³ m - (1) (a) (ii), (b)-(i), (c)-(iv), (d)-(iii) (2) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv) - (3) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii) - (4) (a)-(i),(b)-(iii), (c)-(iv), (d)-(ii) Sol. By theory #### CRASH COURSE **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises (2) r ## **Motion** $(4) r^2$ 3. In an experiment to verify Stokes law, a small spherical ball of radius r and density ρ falls under gravity through a distance h in air before entering a tank of water. If the terminal velocity of the ball inside water is same as its velocity just before entering the water surface, then the value of h is proportional to: (ignore viscosity of air) स्टोक नियम को सत्यापित करने के एक प्रयोग में, r त्रिज्या तथा ρ घनत्व की एक छोटी गोलीय गेंद पानी के एक टेंक में प्रवेश करने के पहले हवा में h दूरी से गुरूत्व के अन्तर्गत गिरती है। यदि पानी के अन्दर गेंद का सीमान्त वेग, पानी की सतह में प्रवेश के ठीक पहले इसके वेग के जैसे समान है। तब h का मान निम्न के समानुपाती है : (हवा की श्यानता नगण्य है।) Sol. $\mathbf{1}$ $V_{T} = \sqrt{2gh}$ $(1) r^4$ $$\frac{2}{9} r^2 \frac{\left(\rho_b - \rho_I\right)g}{n} = \sqrt{2gh}$$ $$r^2 \propto \sqrt{h} \ \Rightarrow r^4 \propto h$$ h ∝ r⁴ Ten charges are placed on the circumference of a circle of radius R with constant angular separation between successive charges. Alternate charges 1, 3, 5, 7, 9 have charge (+q) each, while 2, 4, 6, 8, 10 have charge (-q) each. The potential V and the electric field E at the centre of the circle are respectively: (Take V= 0 at infinity) दस आवेश R त्रिज्या के एक वत की परिधि पर रखें जाते है, जहाँ क्रमागत आवेशों के बीच नियत कोणीय पथक्करण है। एकान्तरिक (alternate) आवेश 1, 3, 5, 7, 9 प्रत्येक (+q) आवेश रखते है, जब कि 2, 4, 6, 8, 10 प्रत्येक (-q) आवेश रखते है। वत के केन्द्र पर विभव V तथा विद्युत क्षेत्र E क्रमशः है : (अनन्त पर V= 0 लेते है।) (1) $$V = 0$$; $E = 0$ (2) $$V = \frac{10q}{4\pi\epsilon_0 R}$$; $E = \frac{10q}{4\pi\epsilon_0 R^2}$ (3) $$V = 0; E = \frac{10q}{4\pi \epsilon_0 R^2}$$ (4) $$V = \frac{10q}{4\pi \epsilon_0 R}$$; $E = 0$ Sol. #### **CRASH COURSE** **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises $$v_{net} = 5 \left(\frac{kq}{R} \right) + \left(\frac{5k(-q)}{R} \right)$$ $$v_{\text{net}} = 0 [Q_{\text{net}} = 0]$$ $E_{\text{net}} = 0$ by symmetry 5. A spaceship in space sweeps stationary interplanetary dust. As a result, its mass increases at a rate $\frac{dM(t)}{dt} = bv^2$ (t), where v(t) is its instantaneous velocity. The instantaneous acceleration of the satellite is: अंतरिक्ष में एक अंतरिक्ष यान ग्रहों के बीच स्थिर धूल को उड़ाता है। परिणामस्वरूप, इसका द्रव्यमान $\frac{dM(t)}{dt} = bv^2(t)$ दर से बढ़ता है, जहाँ v(t) इसका तात्क्षणिक वेग है। उपग्रह का तात्क्षणिक त्वरण है: $$(1) -bv^3(t)$$ $$(2) - \frac{bv^3}{M(t)}$$ (2) $$-\frac{bv^3}{M(t)}$$ (3) $-\frac{2bv^3}{M(t)}$ (4) $-\frac{bv^3}{2M(t)}$ (4) $$-\frac{bv^3}{2M(t)}$$ Sol. $$\frac{dM(t)}{dt} = -bv^2$$ in free space no external force so there in only thrust force on rocket $$f_{in} = \frac{dM}{dt} (V_{rel})$$ $$Ma = \left(\frac{-bv^2}{(t)}\right)v$$ $$a = \frac{-bv^3}{M(t)}$$ Two different wires having lengths L₁ and L₂, and respective temperature coefficient of linear 6. expansion α_1 and α_2 , are joined end-to-end. Then the effective temperature coefficient of linear expansion is: $\mathbf{L_1}$ व $\mathbf{L_2}$ लम्बाईयों वाले तथा α_1 व α_2 सम्बन्धित रेखीय प्रसार ताप गुणांक वाले दो भिन्न—भिन्न तार सिरें से जोड़े जाते है। तब रेखीय प्रसार का प्रभावी ताप गुणांक है: (1) $$\frac{\alpha_{1}L_{1} + \alpha_{2}L_{2}}{L_{1} + L_{2}}$$ (2) $$2\sqrt{\alpha_1\alpha_2}$$ (3) $$4 \frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2} \frac{L_2 L_1}{(L_2 + L_1)^2}$$ $$(4) \ \frac{\alpha_1 + \alpha_2}{2}$$ #### **CRASH COURSE FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises ## Motion[®] $$\begin{aligned} \textbf{Sol.} & \quad \textbf{1} \\ & \quad \textbf{L'}_1 = \textbf{L}_1 \ (1 + \alpha_1 \Delta \textbf{T}) \\ & \quad \textbf{L'}_2 = \textbf{L}_2 \ (1 + \alpha_2 \Delta \textbf{T}) \\ & \quad \textbf{L'} + \textbf{L}_2' = \textbf{L}_1 + \textbf{L}_2 + \textbf{L}_1 \alpha_1 \Delta \textbf{T} + \textbf{L}_2 \alpha_2 \Delta \textbf{T} \end{aligned}$$ $$= (\textbf{L}_1 + \textbf{L}_2) \left[1 + \left[\frac{\textbf{L}_1 \alpha_1 + \textbf{L}_2 \alpha_2}{\textbf{L}_1 + \textbf{L}_2} \right] \Delta \textbf{T} \right]$$ $$= (\textbf{L}_1 + \textbf{L}_2) \left[1 + \alpha_{eq} \Delta \textbf{T} \right)$$ $$\textbf{So, } \alpha_{eq} = \frac{\textbf{L}_1 \alpha_1 + \textbf{L}_2 \alpha_2}{\textbf{L}_1 + \textbf{L}_2} \end{aligned}$$ 7. In the circuit, given in the figure currents in different branches and value of one resistor are shown. Then potential at point B with respect to the point A is: परिपथ में, दिये गये चित्र में विभिन्न शाखाओं में धारायें तथा एक प्रतिरोधक का मान दिखाया गया है। तब बिन्दु A के सापेक्ष बिन्दु B पर विभव है: (1) +2 V **Sol.** 3 Let $$V_A = 0$$ $V_B - V_A = 1 - 0$ = 1 volt **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Doubt Support ◆ Advanced Level Test Access Live Test Paper Discussion ◆ Final Revision Exercises **ANSWER KEY** हमारा विश्वास... हर एक विद्यार्थी है ख़ास 8. The velocity (v) and time (t) graph of a body in a straight line motion is shown in the figure. The point S is at 4.333 seconds. The total distance covered by the body in 6 s is: एक सरल रेखीय गति में एक वस्तु का वेग (v) तथा समय (t) का ग्राफ चित्रानुसार है। बिन्दु S, 4.333 सैकण्ड पर है। 6 सैकण्ड में वस्तु द्वारा तय कुल दूरी है: - (1) $\frac{37}{3}$ m - (2) $\frac{49}{4}$ m - (3) 12 m - (4) 11 m Sol. distance = area under graph $$= \frac{1}{2} (4) \left(\frac{13}{3} + 1 \right) + \left[\frac{1}{2} \left(6 - \frac{13}{3} \right) \times 2 \right]$$ $$= 2 \times \frac{16}{3} + \frac{5}{3}$$ $$= \frac{32}{3} + \frac{5}{3} = \frac{37}{3} \text{ m}$$ 9. An infinitely long straight wire carrying current I, one side opened rectangular loop and a conductor C with a sliding connector are located in the same plane, as shown in the figure. The connector has length I and resistance R. It slides to the right with a velocity v. The resistance of the conductor and the self inductance of the loop are negligible. The induced current in the loop, as a function of separation r, between the connector and the straight wire is: एक अनन्त लम्बा सीधा I धारावाही तार, एक तरफ से खुला आयताकार लूप तथा एक फिसलन योजक (connector) के साथ एक चालक C चित्रानुसार समान तल में स्थित है। योजक की लम्बाई I तथा प्रतिरोध R है। यह v वेग से दांयी ओर फिसलता है। चालक का प्रतिरोध तथा लूप का स्वप्रेरकत्व नगण्य है। योजक तथा सीधे तार के बीच r दूरी के फलन के रूप में लूप में प्रेरित धारा है: - (1) $\frac{\mu_0}{2\pi} \frac{\text{Ivl}}{\text{Rr}}$ - (2) $\frac{\mu_0}{\pi} \frac{\text{Ivl}}{\text{Rr}}$ - $(3) \frac{2\mu_0}{\pi} \frac{IVI}{Rr}$ - (4) $\frac{\mu_0}{4\pi} \frac{\text{Ivl}}{\text{Rr}}$ ### CRASH COURSE **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises MOTION Sol. $$B = \left(\frac{\mu_0 I}{2\pi r}\right)$$ induced emf $$e = BvI$$ $$= \frac{\mu_0 I}{2\pi r} \text{ V.I}$$ $$=\frac{\mu_0 I v I}{2\pi r}$$ induced current i = $$\frac{e}{R} = \frac{\mu_0 I V I}{2\pi r R}$$ 10. Two zener diodes (A and B) having breakdown voltages of 6 V and 4 V respectively, are connected as shown in the circuit below. The output voltage V_0 variation with input voltage linearly increasing with time, is given by: $(V_{input} = 0 \text{ V at } t = 0)$ (figures are qualitative) दो जीनर डायोड (A तथा B) की भंजन वोल्टता क्रमशः 6 V व 4 V है, नीचे परिपथ में दिखायेनुसार जोड़े जाते है। निवेशी वोल्टता के साथ निर्गत वोल्टता V_0 का परिवर्तन समय के साथ रेखीय रूप से बढ़ता है, जो निम्न द्वारा दिया जाता है : (t = 0 पर $$V_{\text{Polar}} = 0 \text{ V}$$) (चित्र गुणात्मक हैं) #### **CRASH COURSE** **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises Sol. (4) $$\dot{t} = 0$$ $V_i = 0$ Given : Zenerdiode maintain constant breakdown voltage. 11. In an adiabatic process, the density of a diatomic gas becomes 32 times its initial value. The final pressure of the gas is found to be n times the initial pressure. The value of n is: एक रूद्धोष्म प्रक्रम में, एक द्विपरमाणुक गैस का घनत्व इसके प्रारम्भिक मान का 32 गुना हो जाता है। गैस का अन्तिम दाब, प्रारम्भिक दाब का n गुना पाया जाता है। n का मान है: (2) $$\frac{1}{32}$$ Sol. $$PV^r = const.$$ $$p(\rho^{-r}) = const.$$ $$P_1 \rho_1^{-r} = p_2 \rho_2^{-r}$$ $r = \frac{7}{5}$ for diatomic $$p_0 \rho_0^{-7/5} = (np_0) (32\rho_0)^{-7/5}$$ $$\rho_0^{-7/5} = \frac{n}{(32)^{7/5}} (\rho_0^{-7/5})$$ $$n = (2^5)^{7/5} = 2^7 = 128$$ - 12. A galvanometer is used in laboratory for detecting the null point in electrical experiments. If, on passing a current of 6 mA it produces a deflection of 2°, its figure of merit is close to: एक धारामापी का उपयोग वैद्युत प्रयोगों में शून्य बिन्दु (null point) विक्षेपण के लिए प्रयोगशाला में किया जता हैं। यदि 6 mA की धारा गुजरने पर यह 2° का विक्षेपण उत्पन्न करता है, तब इसके गुणता की संख्या (figure of merit) निम्न के समीपतम है : (1) 6×10^{-3} A/div. (2) 3×10^{-3} A/div. (3) 666° A/div. (4) 333° A/div. - Sol. figure of merit = $$\frac{I}{\theta} \Rightarrow \text{A/div.}$$ $$= \frac{6 \times 10^{-3}}{2} = 3 \times 10^{-3} \text{ A/div.}$$ #### CRASH COURSE **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises ## **Motion**[®] 13. In the circuit shown, charge on the 5 μF capacitor is: दिखाये परिपथ में, 5 µF संधारित्र पर आवेश है : (1) 5.45 μC (2) 18.00 μC (4) 16.36 μC Sol. 2 $$(V-6) \times 2 + (V-0) \times 5 + (V-6) = 0$$ $2V-12+5V+4V-24=0$ $$11V = 36$$ $$V = \frac{36}{11}$$ $$q = CV = 5 \times \frac{36}{11} \approx 18.00 \,\mu\text{C}$$ - 14. A parallel plate capacitor has plate of length 'l', width 'w' and separation of plates is 'd'. It is connected to a battery of emf V.A dielectric slab of the same thickness 'd' and of dielectric constant k=4 is being inserted between the plates of the capacitor. At what length of the slab inside plates, will the energy stored in the capacitor be two times the initial energy stored? एक समानान्तर प्लेट संधारित्र की प्लेट की लम्बाई 'l', चौड़ाई 'w' तथा प्लेटों का पथक्करण 'd' है। यह वि.वा.बल V की एक बैटरी से जोड़ा जाता है। k = 4 परावैद्युतांक की तथा समान मोटाई 'd' की एक परावैद्युत पट्टिका संधारित्र की प्लेटों के बीच प्रवेश कराई जाती हैं। प्लेटों के अन्दर पट्टिका की किस लम्बाई पर, संधारित्र में संचित ऊर्जा प्रारम्भिक संचित ऊर्जा की दो गुनी होगी? - (1) 2I/3 - (2) 1/2 - (3) 1/4 - (4) 1/3 **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises #### Sol. area of plate = lw $$C = \frac{\epsilon_0 A}{d} = \frac{\epsilon_0 I \omega}{d}$$ $$U_1 = \frac{1}{2} cv^2 = \frac{\frac{1}{2} \varepsilon_0 I_{\omega}}{d} v^2$$ $$C_{eq} = C_1 + C_2$$ $$C_{eq} = \frac{\epsilon_0 \omega x k}{d} + \frac{\epsilon_0 \omega (l-x)}{d}$$ $$C_{eq} = \frac{\varepsilon_0 \omega}{d} [kx + I - x]$$ $$U_f = \frac{1}{2} C_{eq} V^2$$ $$U_{_f} = \, 2U_{_i} \Rightarrow \, \frac{1}{2} \, \, \frac{\epsilon_0 \omega}{d} \, \left[kx \, + \, l \, - x \right] \, v^2 = \, 2 \, \times \, \frac{1}{2} \, \, \frac{\epsilon_0 l \omega}{d} \, \, v^2 \,$$ $$kx + l-x = 2l$$ $$4x - x = l$$ $$3x = l$$ $$4x - x = 1$$ $$3x = 1$$ $$x = \frac{1}{3}$$ #### **CRASH COURSE** **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises ## **Motion** **15.** A radioactive nucleus decays by two different processes. The half life for the first process is 10 s and that for the second is 100 s. The effective half life of the nucleus is close to: एक रेडियो सक्रिय नाभिक दो भिन्न-भिन्न प्रक्रमों द्वारा क्षयित होता है। प्रथम प्रक्रम के लिए अर्ध आयु 10 सेकण्ड है तथा दूसरें प्रक्रम के लिए 100 सैकण्ड हैं। नाभिक की प्रभावी अर्ध आयु निम्न के समीप है - - (1) 55 sec. - (2) 6 sec. - (3) 12 sec. - (4) 9 sec. Sol. 4 $$T_1 = 10 \text{ sec}$$ $\lambda_1 = \frac{\ln 2}{T_1}$ $$T_2 = 100s$$, $\lambda_2 = \frac{In2}{T_2}$, $\lambda_{eq} = \frac{In2}{T_{eq}}$ we know $$\lambda_{eq} = \lambda_1 + \lambda_2$$ $$\frac{\ln 2}{T_{eq}} = \frac{\ln 2}{T_1} + \frac{\ln 2}{T_2}$$ $$\frac{1}{T_{eq}} = \frac{1}{10} + \frac{1}{100} = \frac{10+1}{100} = \frac{11}{100}$$ $$T_{eq} = \frac{100}{11} = 9 s$$ **16.** A driver in a car, approaching a vertical wall notices that the frequency of his car horn, has changed from 440 Hz to 480 Hz, when it gets reflected from the wall. If the speed of sound in air is 345 m/s, then the speed of the car is: एक उर्ध्वाधर दीवार के समीप पहुंच रही एक कार में एक चालक देखता है कि उसके कार के हॉर्न की आवित में 440 Hz से 480 Hz तक परिवर्तन होता है, जब यह दीवार से परावर्तित होती है। यदि हवा में ध्विन की चाल 345 m/s है, तब कार की चाल है: - (1) 24 km/hr - (2) 36 km/hr - (3) 54 km/hr - (4) 18 km/hr Sol. 3 #### **CRASH COURSE** **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises car towards $$f_1 = \left(\frac{v - 0}{v - v_C}\right) f_0 \qquad \dots (i)$$ $$480 = \left(\frac{v + v_c}{v - 0}\right) f_i \Rightarrow \left(\frac{v + v_c}{v}\right) \left(\frac{v}{v - v_c}\right) f_0$$ $$480 = (350 + V_c) \times \left(\frac{440}{350 - V_c}\right)$$ $$12 = \left(\frac{350 + V_{c}}{350 - V_{c}}\right) \times 11$$ $$12 \times 350 - 12 \times V_{c} = 350 \times 11 + 11 V_{c}$$ $23V_{c} = 4200 - 3850 = 350$ $$V_{c} = \frac{350}{23} \text{ m}$$ $$V_{c} = \frac{350}{23} \times \frac{18}{5} \text{ km/h}$$ $$=\frac{70\times18}{23}$$ $$= 54 \, \text{km/hr}$$ **17.** An iron rod of volume 10^{-3} m³ and relative permeability 1000 is placed as core in a solenoid with 10 turns/cm. If a current of 0.5 A is passed through the solenoid, then the magnetic moment of the rod will be: 1000 सापेक्षिक चुम्बकशीलता (permeability) तथा 10-3m³ आयतन की एक लोहे की छड़, 10 फेरे⁄सेमी वाली एक परिनालिका में क्रोड़ (core) के रूप में रखी जाती है। यदि 0.5 A की धारा परिनालिका से गुजारी जाती है, तब छड़ का चुम्बकीय आधूर्ण होगा : (1) $0.5 \times 10^2 \,\mathrm{Am^2}$ (2) $50 \times 10^2 \text{ Am}^2$ (3) $5 \times 10^2 \text{ Am}^2$ $(4) 500 \times 10^2 \,\mathrm{Am^2}$ Sol. magnetic moment $\vec{M} = NIA(\mu_r - 1)$ $$n = 10 \text{ turns/cm}$$ = (nl) IA ($\mu_r - 1$) $$=\frac{10}{10^{-2}} \text{ turn/m}$$ = nI (AI) (μ_r – 1) $$= 1000 \text{ turn/m} = 1000 \times 0.5 \times 10^{-3} (1000 - 1)$$ $$V = 10^{-3} \text{m}^3 = \text{Al} = 0.5 \times (999) = 499.5$$ $$I = 0.5A, \mu_r = 500$$ $$N = \text{nl} = 5 \times 10^2$$ $$V = 10^{-3} \text{m}^3 = \text{Al}$$ = 0.5 × (999) = 499.5 $$I = 0.5A, \mu_r$$ = 500 $N = nI$ = 5 × 10² ### CRASH COURSE **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises ## Motio 18. Two coherent sources of sound, S_1 and S_2 , produce sound waves of the same wavelength, $\lambda = 1$ m, in phase. S_1 and S_2 are placed 1.5 m apart (see fig). A listener, located at L, directly in front of S_2 finds that the intensity is at a minimum when he is 2 m away from S₂. The listener moves away from S₁, keeping his distance from S₂ fixed. The adjacent maximum of intensity is observed when the listener is at a distance d from S₁. Then, d is: S_1 तथा S_2 ध्विन के दो कला संबद्ध स्त्रोत कला में $\lambda=1~\mathrm{m}$ समान तरंगदैध्य की ध्विन तरंगे उत्पन्न करते है। S_1 तथा S_2 चित्रानुसार $1.5~{\rm m}$ दूरी पर रखें जाते है। सीधा ${\rm S_2}$ के सामने ${\rm L}$ पर स्थित एक श्रोता पाता है कि तीव्रता न्यूनतम पर है, जब वह ${\rm S_2}$ से $2~{\rm m}$ दूरी पर है। श्रोता S_2 से उसकी दूरी स्थिर रखते हुए, S_1 से दूर गित करता है। समीपवर्ती अधिकतम तीव्रता प्रेक्षित होती है, जब श्रोता S_1 से d दूरी पर होता है। तब d है: (1) 12 m (2) 2 m (4) 5 m 3 Sol. For min at (L) $$S_1L - S_2L = \Delta x = \frac{\lambda}{2} (2n + 1); (n = 0, 12)$$ $$2.5 - 2 = \frac{1}{2} (2n + 1)$$ $$0.5 \times 2 = (2n + 1)$$ 2n = 0 #### CRASH COURSE **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises **ANSWER KEY** हमारा विश्वास... हर एक विद्यार्थी है ख़ास n = 0 (first minima) so at 'p' \rightarrow first maxima $S_1P - S_2P = \lambda$ [n = 1] for first maxima $S_{1}^{1} P - 2 = 1$ $S_1P = 1 + 2$ $d = 3 \, m$ The quantities $x = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$, $y = \frac{E}{B}$ and $z = \frac{I}{CR}$ are defined where C-capacitance, R-Resistance, I-19. length, E-Electric field, B-magnetic field and \in_0 , μ_0 -free space permittivity and permeability respectively. Then: - (1) Only y and z have the same dimension (2) x, y and z have the same dimension - (3) Only x and y have the same dimension (4) Only x and z have the same dimension राशियाँ $X = \frac{1}{\sqrt{\mu_n \epsilon_n}}$, $y = \frac{E}{B}$ तथा $z = \frac{I}{CR}$ परिभाषित है, जहाँ C-धारिता, R-प्रतिरोध, I-लम्बाई, E-विद्युत क्षेत्र, B-चुम्बकीय क्षेत्र तथा ∈ , , µ क्रमशः मुक्त स्थान की विद्युतशीलता और चुम्बकशीलता (permeability) है। तब: - (1) केवल y तथा z समान विमा रखते है। - (2) x, y तथा z समान विमा रखते है। - (3) केवल x तथा y समान विमा रखते है। - (4) केवल x तथा z समान विमा रखते है। Sol. $$x = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = (speed)$$ $$y = \frac{E}{R} = speed$$ $$Z = \frac{I}{CR} = \frac{m}{sec} = m/s$$ [y] = LT⁻¹ $$[y] = LT^{-1}$$ $$[RC = T]$$ $$[Z] = LT^{-1}$$ So, x,y,z has same dimension 20. The acceleration due to gravity on the earth's surface at the poles is g and angular velocity of the earth about the axis passing through the pole is ω. An object is weighed at the equator and at a heigh h above the poles by using a spring balance. If the weights are found to be same, then h is: (h<<R, where R is the radius of the earth) पथ्वी की सतह पर ध्रवों पर गुरूत्व के कारण त्वरण g है तथा ध्रुव से गुजरने वालें अक्ष के परितः पथ्वी का कोणीय वेग ω हैं। एक वस्तु को एक स्प्रिंग तूला का उपयोग करके ध्रुवों के ऊपर h ऊँचाई पर तथा भूमध्य रेखा पर तोला (weights) जाता है। यदि भार समान पायें जाते है, तब h है : (h<<R है, जहाँ R पथ्वी की त्रिज्या है) $$(1) \frac{R^2 \omega^2}{a}$$ $$(2) \frac{R^2 \omega^2}{8a}$$ $$(3) \frac{R^2 \omega^2}{4a}$$ (1) $$\frac{R^2\omega^2}{q}$$ (2) $\frac{R^2\omega^2}{8q}$ (3) $\frac{R^2\omega^2}{4q}$ (4) $\frac{R^2\omega^2}{2q}$ ### **CRASH COURSE** **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises Sol. 4 $\cdot \cdot$ weight same at poles and at h (so $g_1 = g_2$) $a_1 = a - R\omega^2$ $$g_2 = g \left(1 - \frac{2h}{R} \right)$$ $$g_1 = g_2$$ $$g - R\omega^2 = g\left(1 - \frac{2h}{R}\right) \Rightarrow g - \frac{2gh}{R}$$ $$R\omega^2 = \frac{2gh}{R}$$ $$h = \frac{R^2 \omega^2}{2g}$$ **21.** Nitrogen gas is at 300° C temperature. The temperature (in K) at which the rms speed of a H_2 molecule would be equal to the rms speed of a nitrogen molecule, is _____. (Molar mass of N_2 gas 28 g). नाइट्रोजन गैस 300° C ताप पर है। वह तापमान (K में) जिस पर एक H_2 अणु की वर्ग माध्य मूल चाल, एक नाइट्रोजन अणु की वर्ग माध्य मूल चाल के बराबर होगी, है ______। (N₂ गैस का आण्विक द्रव्यमान 28 g) Sol. 41 $$V_{rms} = \sqrt{\frac{3RT}{m}}$$ $$V_{N_2} = \sqrt{\frac{3R(573)}{28}}$$ $$V_{H_2} = \sqrt{\frac{3RT}{2}}$$ $$V_{H_2} = V_{N_2}$$ $$\sqrt{\frac{3RT}{2}} = \sqrt{\frac{3R(573)}{28}}$$ $$\frac{T}{2} = \frac{573}{28}$$ **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises **ANSWER KEY** हमारा विश्वास... हर एक विद्यार्थी है ख़ास The surface of a metal is illuminated alternately with photons of energies $E_1 = 4$ eV and 22. $E_2 = 2.5$ eV respectively. The ratio of maximum speeds of the photoelectrons emitted in the two cases is 2. The work function of the metal in (eV) is _ एक धातु की सतह, क्रमशः $E_1 = 4 \text{ eV}$ व $E_2 = 2.5 \text{ eV}$ ऊर्जाओं के फोटोनों से एकान्तर (alternately) रूप से प्रदीपत की जाती है। दोनों स्थितियों में उत्सर्जित प्रकाश इलेक्ट्रॉनों की अधिकतम चालों का अनुपात 2 हैं। धातु का कार्यफलन (eV में) है ___ 2 Sol. $$\frac{\frac{1}{2}\,mV_1^2}{\frac{1}{2}\,mV_2^2}\,=\!\frac{E_1\!-\!\varphi_0}{2.5\!-\!\varphi_0}\,=\,\frac{4-\varphi_0}{2.5\!-\!\varphi_0}$$ $$\left(\frac{V_1}{V_2}\right)^2 \, = \, \frac{4 - \phi_0}{2.5 - \phi_0}$$ $$(2)^2 = \frac{4 - \phi_0}{2.5 - \phi_0}$$ $$10 - 4\phi_0 = 4 - \phi_0$$ $3\phi_0 = 10 - 4 = 6$ $\phi_0 = 2eV$ 23. A prism of angle $A=1^{\circ}$ has a refractive index $\mu=1.5$. A good estimate for the minimum angle of deviation (in degrees) is close to N/10. Value of N is $A=1^{\circ}$ कोण के एक प्रिज्म का अपवर्तनांक $\mu=1.5$ है। न्यूनतम विचलन कोण (डिग्री में) के लिए एक अच्छा आंकलन N/10 के समीप है। तब N का मान है - Sol. 5 A = 1° $$\delta = (\mu - 1) A$$ = (1.5 - 1) A = 0.5 × 1 = $\frac{5}{10} = \frac{N}{10}$ so N = 5 24. A body of mass 2 kg is driven by an engine delivering a constant power of 1 J/s. The body starts from rest and moves in a straight line. After 9 seconds, the body has moved a distance (in m) 2 kg द्रव्यमान की एक वस्तू, 1 J/s की नियत शक्ति देने वाले एक इंजन द्वारा चलाई जाती हैं। वस्तू विराम से प्रारम्भ होती है तथा एक सरल रेखा में गति करती है। सैकण्ड पश्चात, वस्तु कितनी दूरी (m में) तय कर चुकी हैं ### CRASH COURSE **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises ## MOTION Sol. $$a = \frac{p}{mv}$$ $$\frac{dv}{dt} = \frac{p}{mv}$$ $$\int_0^u v dv = \frac{p}{m} \int_0^t dt$$ $$\frac{u^2}{2} = \frac{p}{m}t$$ $$u = \sqrt{\frac{2p}{m}} \sqrt{t}$$ $$\frac{dx}{dt} = \sqrt{\frac{2p}{m}}\sqrt{t}$$ $$\int_0^x dx = \sqrt{\frac{2p}{m}} \int_0^9 \sqrt{t} dt$$ $$x = \frac{2}{3} \left[\left(9 \right)^{1/2} \right]^3$$ $$=\frac{2}{3}\times 27$$ $$x = 18$$ $$Pt = w = \frac{1}{2} mv^2 - 0$$ $$1 \times t = \frac{1}{2} \times 2 \times u^2$$ $$u = \sqrt{t}$$ $$\frac{dx}{dt} = \sqrt{t} = \int_0^1 dx = \int_0^9 \sqrt{t} dt$$ $$x = \frac{\left[t^{3/2}\right]_0^9}{\frac{3}{2}} = 18 \,\text{m}$$ #### **CRASH COURSE** **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 Doubt Support ◆ Advanced Level Test Access Live Test Paper Discussion ◆ Final Revision Exercises **ANSWER KEY** हमारा विश्वास... हर एक विद्यार्थी है ख़ास 25. A thin rod of mass 0.9 kg and length 1 m is suspended, at rest, from one end so that it can freely oscillate in the vertical plane. A particle of mass 0.1 kg moving in a straight line with velocity 80 m/ s hits the rod at its bottom most point and sticks to it (see figure). The angular speed (in rad/s) of the rod immediately after the collision will be _ 1m लम्बाई तथा 0.9 kg द्रव्यमान की एक पतली छड़ एक सिरें से विराम पर लटकाई जाती है ताकि यह ऊर्ध्वाधर तल में मुक्त रूप से दोलन कर सकें। 80 m/s वेग से एक सरल रेखा में गतिमान 0.1 kg द्रव्यमान का एक कण, छड़ से इसके निम्नतम बिन्दू पर टकराता है तथा चित्रानुसार इससे चिपक जाता है। टक्कर के त्रन्त बाद छड़ की कोणीय चाल (rad/s में) होगी _ Sol. $$0.1 \times 80 \times 1 = \frac{0.9 \times 1^2}{3} \times \omega + (0.1) 1^2 \omega$$ $$8 = (0.3 + 0.1) \omega$$ $$8 = (0.4) \omega$$ $$\omega = \frac{80}{4} = 20$$ ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises # जब इन्होने पूरा किया अपना सपना तो आप भी पा सकते है लक्ष्य अपना #### **JEE MAIN RESULT 2019** Nitin Gupta 335 13th (2019) Shiv Modi 318 **Ritik Bansal** 308 300 #### **KOTA'S PIONEER IN DIGITAL EDUCATION** 1,95,00,000+ viewers | 72,67,900+ viewing hours | 2,11,000+ Subscribers | SERVICES | SILVER | GOLD | PLATINUM | |-------------------------------------------------------------------------|------------|------------|----------| | Classroom Lectures (VOD) | | | | | Live interaction | NA | | | | Doubt Support | NA | | | | Academic & Technical Support | NA | | | | Complete access to all content | NA | | | | Classroom Study Material | NA | | | | Exercise Sheets | NA | S. | | | Recorded Video Solutions | NA | 8 | | | Online Test Series | NA | | | | Revision Material | NA | | | | Upgrade to Regular Classroom program | Chargeable | Chargeable | Free | | Physical Classroom | NA | NA | | | Computer Based Test | NA | NA | | | Student Performance Report | NA | NA | | | Workshop & Camp | NA | NA | | | Motion Solution Lab- Supervised
learning and instant doubt clearance | NA | NA | | | Personalised guidance and mentoring | NA | NA | | #### **FEE STRUCTURE** | CLASS | SILVER | GOLD | PLATINUM | |-----------|--------|----------|----------| | 7th/8th | FREE | ₹ 12,000 | ₹ 35,000 | | 9th/10th | FREE | ₹ 15,000 | ₹ 40,000 | | 11th | FREE | ₹ 29,999 | ₹ 49,999 | | 12th | FREE | ₹ 39,999 | ₹ 54,999 | | 12th Pass | FREE | ₹ 39,999 | ₹ 59,999 | - + Student Kit will be provided at extra cost to Platinum Student. - SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures - GOLD (Online) can be converted to regular classroom (Any $MOTION \ Center) \ by paying \ difference \ amount \ after \ lockdown.$ - PLATINUM (Online + Regular) can be converted to regular classroom (Any MOTION Center) without any cost after lockdown. New Batch Starting from: 16 & 23 September 2020 **Zero Cost EMI Available**