QUESTION PAPER WITH SOLUTION PHYSICS _ 4 Sep. _ SHIFT - 1 H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |⊠: info@motion.ac.in **ANSWER KEY** हमारा विश्वास... हर एक विद्यार्थी है खास - Starting from the origin at time t = 0, with initial velocity $5jms^{-1}$, a particle moves in the x-y plane **Q.1** with a constant acceleration of $(10\hat{i} + 4\hat{j})$ ms⁻². At time t, its coordinates are (20 m, y₀ m). The values of t and yo are, respectively: - (1) 5s and 25 m - (2) 2s and 18 m - (3) 2s and 24 m - (4) 4s and 52 m समय t = 0 पर मूल बिन्दु से प्रारंभिक वेग 5 ims^{-1} व त्वरण $(10 \text{ i} + 4 \text{ j}) \text{ms}^{-2}$ के साथ शुरू होकर एक कण x-y समतल पर चल रहा है। समय t पर यह बिन्दु (20 m, y, m) पर है। क्रमशः समय t और y, के मान हैं: - (1) 5s तथा 25 m - (2) 2s तथा 18 m - (3) 2s तथा 24 m (4) 4s तथा 52 m Sol. Equation of motion gives us $$y = u_y t + \frac{1}{2} a_y t^2$$ Here $u_y = 5ms^{-1}$, $u_x = 0 ms - 1$, $a_x = 10ms^{-2}$, $a_y = 4ms^{-2}$ $$y = 5t + \frac{1}{2}(4)t^2$$ $$y = 5t + 2t^2$$ and $$x = 0 + \frac{1}{2}$$ (10) $(t^2) = 20$ $$t = 2 s$$ $\Rightarrow y = 10 + 8 = 18m$ - A small bar magnet placed with its axis at 30° with an external field of 0.06 T experiences a torque of Q.2 0.018 Nm. The minimum work required to rotate it from its stable to unstable equilbrium position is: एक दंड चुम्बक को यदि 0.06 T के एक बाहरी चुम्बकीय क्षेत्र में ऐसे रखा जाय कि इसका अक्ष चुम्बकीय क्षेत्र से 30° कोण बनाता हो, तो चुम्बक पर लगने वाला बल आघूर्ण 0.018 Nm है। ऐसे में यदि चुम्बक को इसके स्थायी साम्य से अस्थायी साम्य तक घुमाया जाय तो इस प्रक्रिया में किये जाने वाले न्यूनतम कार्य का मान होगा : - (1) $7.2 \times 10^{-2} J$ - $(2) 6.4 \times 10^{-2} J$ - (3) $9.2 \times 10^{-3} \text{ J}$ (4) $11.7 \times 10^{-3} \text{ J}$ Sol. $\tau = MB \sin 30^{\circ}$ $$0.018 = MB\left(\frac{1}{2}\right)$$ $W = \Delta U = |MB \cos 0^{\circ} - MB \cos 180^{\circ}| = 2MB = 0.072 J$ - **Q.3** Choose the correct option relating wave lengths of different parts of electromagnetic wave spec- - (1) $\lambda_{\text{radio waves}} > \lambda_{\text{micro waves}} > \lambda_{\text{visible}} > \lambda_{\text{x-rays}}$ (2) $\lambda_{\text{visible}} > \lambda_{\text{x-rays}} > \lambda_{\text{radio waves}} > \lambda_{\text{micro waves}} > \lambda_{\text{micro waves}} < \lambda_{\text{radio waves}} < \lambda_{\text{visible}} > \lambda_{\text{x-rays}} > \lambda_{\text{radio waves}} > \lambda_{\text{micro waves}} < \lambda_{\text{visible}} > \lambda_{\text{x-rays}} > \lambda_{\text{radio waves}} > \lambda_{\text{micro waves}} > \lambda_{\text{radio waves}} > \lambda_{\text{visible}} > \lambda_{\text{x-rays}} > \lambda_{\text{radio waves}} \lambda$ - (1) $\lambda_{\dot{\tau}$ िडयो तरंगें $> \lambda_{\mu | \xi \beta \hat{\tau} \hat{\tau} \hat{\tau}} > \lambda_{\tau \hat{\tau} \hat{\tau} \hat{\tau} \hat{\tau}}$ (3) $\lambda_{\text{qva}} < \lambda_{\text{Hisphida}} < \lambda_{\text{Visid actif}} < \lambda_{\text{x-factif}}$ - (2) $\lambda_{qq} > \lambda_{x-fbv\dot{\eta}} > \lambda_{\dot{\tau}fgu\dot{\eta}} > \lambda_{\eta gg\dot{\eta}}$ (4) $\lambda_{x-favy} < \lambda_{Hisabi da} < \lambda_{vision} < \lambda_{vision}$ Sol. By property of electromagnetic wave spectrum. ## CRASH COURSE **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises ## MOTION On the x-axis and at a distance x from the origin, the gravitational field due a mass distribution is **Q.4** given by $\frac{Ax}{(x^2 + a^2)^{3/2}}$ in the x-direction. The magnitude of gravitational potential on the x-axis at a distance x, taking its value to be zero at infinity, is: x-अक्ष पर और मूलबिन्दु से x दूरी पर एक वितरित द्रव्यमान से उत्पन्न होने वाला गुरूत्वीय क्षेत्र $\frac{Ax}{\left(x^2+a^2\right)^{3/2}}$ x-दिशा में है । x-अक्ष पर मूल बिन्दु से x दूरी पर गुरूत्वीय विभव का परिमाण (इसे x = ∞ पर शून्य मानकर) होगा : (1) $$A(x^2 + a^2)^{3/2}$$ (1) $$A(x^2 + a^2)^{3/2}$$ (2) $\frac{A}{(x^2 + a^2)^{1/2}}$ (3) $A(x^2 + a^2)^{1/2}$ (4) $\frac{A}{(x^2 + a^2)^{3/2}}$ (3) $$A(x^2 + a^2)^{1/2}$$ (4) $$\frac{A}{(x^2 + a^2)^{3/2}}$$ Sol. $$E_{x} = \frac{Ax}{(x^{2} + a^{2})^{3/2}}$$ $$\frac{-dV}{dx} = \frac{Ax}{\left(x^2 + a^2\right)^{3/2}}$$ $$\int_{0}^{V} dV = -\int_{\infty}^{x} \frac{Ax}{(x^{2} + a^{2})^{3/2}} dx$$ $$V = \frac{A}{(x^2 + a^2)^{1/2}}$$ A small bar magnet is moved through a coil at constant speed from one end to the other. Which of **Q.5** the following series of observations will be seen on the galvanometer G attached across the coil? Three positions shown describe: (a) the magnet's entry (b) magnet is completely inside and (c) magnet's exit. एक छोटे दंड चुम्बक को एक कुडली के अंदर एक सिरे से दूसरे तक समान गति से ले जाया जाता है। ऐसे में नीचे दिये गये श्रेणीबद्ध प्रेक्षण इस कुंडली पर लगे गैल्वेनोमापी G पर कैसे दिखेंगे ? दिखायी गयी तीन स्थितियाँ है : (a) जब चुम्बक कुंडली में प्रवेश करता है, (b) जब चुम्बक पूरी तरह से कुंडली के अन्दर है, तथा (c) जब चुंबक कुंडली के बाहर निकल रहा है। ### CRASH COURSE **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube ### Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises ## **Motion** ## **JEE MAIN 2020** **ANSWER KEY** हमारा विश्वास... हर एक विद्यार्थी है ख़ास Sol. 1 Let N S → When bar magnet enters the coil, emf is generated due to magnetic flux change. \rightarrow When completely inside i = 0 \rightarrow when bar magnet exits the coil, emf is generated again but of opposite nature. - **Q.6** A battery of 3.0V is connected to a resistor dissipating 0.5 W of power. If the terminal voltage of the battery is 2.5V, the power dissipated within the internal resistance is: - 3.0V की एक बैटरी एक प्रतिरोधक से जुड़ी हुई है। इस प्रतिरोधक में 0.5 W शक्ति का क्षय होता है। यदि बैटरी के सिरों (terminals) के बीच वोल्टता 2.5V हो तो बैटरी के आंतरिक प्रतिरोध में क्षय होने वाली शक्ति का मान है: (1) 0.072 W (2) 0.10 W (3) 0.125 W (4) 0.50 W Sol. $$P_0 = 0.5 \text{ W}$$ i. (2.5) = 0.5 i = 1/5 A $$P_r = \left(\frac{1}{5}\right)(0.5) = 0.1 \text{ W}$$ ### **CRASH COURSE** **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube ### Go Premium at ₹ 1100 Doubt Support ◆ Advanced Level Test Access Live Test Paper Discussion ◆ Final Revision Exercises Two charged thin infinite plane sheets of uniform surface charge density σ_+ and σ_- , where $|\sigma_+| > |\sigma_-|$, intersect at right angle. Which of the following best represents the electric field lines for this system: **Q.7** दो अनन्त लम्बाई—चौड़ाई की पतली चादरों पर एकसमान सतह घनत्व σ_+ और σ_- का आवेश वितरित है $|\sigma_+| > |\sigma_-|$ ये चादरें एक दूसरे के लम्बवत् हैं। ऐसी स्थिति में निम्न में से कौन सा चित्र इस निकाय का विद्युत क्षेत्र प्रदर्शित करता है : Sol. Let us choose points A,B,C,D as shown to understand the direction of net electric field to get a better picture. ### **CRASH COURSE** **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube ### Go Premium at ₹ 1100 - ◆ Doubt Support ◆ Advanced Level Test Access - ◆ Live Test Paper Discussion ◆ Final Revision Exercises **ANSWER KEY** हमारा विश्वास... हर एक विद्यार्थी है ख़ास An air bubble of radius 1 cm in water has an upward acceleration 9.8 cm s⁻². The density of water **Q.8** is 1 gm cm⁻³ and water offers negligible drag force on the bubble. The mass of the bubble is त्रिज्या 1 cm का एक वायू का बुलबुला पानी में ऊपर की ओर 9.8 cm s⁻² त्वरण से चल रहा है। पानी का घनत्व 1 gm cm⁻³ है और बुलबुले पर पानी द्वारा लगने वाला कर्षण बल नगण्य है। बुलबुले का द्रव्यमान है (q = 980 cm/s²) : (1) 1.52 gm Sol. $$F_h - mg = ma$$ $$\Rightarrow \ m = \frac{F_b}{g+a}$$ $$m = \frac{V \cdot \rho_w g}{q + a}$$ $$m = \frac{(4/3)\pi r^3 . \rho_w \cdot g}{g + a} = 4.15 \text{ gram}$$ A wire A, bent in the shape of an arc of a circle, carrying a current of 2A and having radius 2 cm **Q.9** and another wire B, also bent in the shape of arc of a circle, carrying a current of 3 A and having radius of 4 cm, are placed as shown in the figure. The ratio of the magnetic field due to the wires A and B at the common centre O is: एक तार A का आकार एक वत्त के चाप का है। इस वत्त की त्रिज्या 2 cm है और इस तार में 2 A की विद्युत धारा बह रही है। एक दूसरा तार B भी एक वत्त के चाप के आकार का है और इस वत्त की त्रिज्या 4 cm है तथा तार में 3 A की धारा बह रही है (चित्र देखें)। इंस रिथित में इन वत्तों के आम केन्द्र (common centre) O पर तार A और तार B से बनने वाले चुम्बकीय क्षेत्रों में मानों का अनुपात होगा: Sol. $$B_{A} = \frac{\mu(2) \left(\frac{3\pi}{2}\right)}{2(a)(2\pi)} = \frac{3\mu}{4a}$$ $$B_{B} = \frac{\mu(3)\left(\frac{5\pi}{3}\right)}{2(2a)(2\pi)} = \frac{5\mu}{8a}$$ $$\frac{B_A}{B_B} = \frac{3\mu}{4a} \times \frac{8a}{5\mu} = 6:5$$ ### **CRASH COURSE FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises # MOTION **Q.10** Particle A of mass $m_A = \frac{m}{2}$ moving along the x-axis with velocity v_0 collides elastically with another particle B at rest having mass $m_B = \frac{m}{3}$. If both particles move along the x-axis after the collision, the change $\Delta\lambda$ in de-Broglie wavlength of particle A, in terms of its de-Broglie wavelength (λ_0) before collision is: द्रव्यमान $m_A = \frac{m}{2}$ का कण A, x-अक्ष के साथ v_0 गित से चलता हुआ द्रव्यमान $m_B = \frac{m}{3}$ के कण B, जो विरामावस्था में है, से प्रत्यास्थतः टकराता है। यदि संघट्ट के बाद दोनों कण x-अक्ष के साथ गतिशील हैं, तब कण A के डी-ब्रोग्ली तरंगदैर्ध्य में परिवर्तन Δλ का मान इसके संघट्ट से पहले की डी-ब्रोग्ली तरंगदैर्ध्य (λ_n) से किस प्रकार संबंधित है ? (1) $$\Delta \lambda = \frac{5}{2} \lambda_0$$ (2) $$\Delta \lambda = 2\lambda_0$$ (3) $$\Delta \lambda = 4\lambda_0$$ (2) $$\Delta \lambda = 2\lambda_0$$ (3) $\Delta \lambda = 4\lambda_0$ (4) $\Delta \lambda = \frac{3}{2}\lambda_0$ Sol. **3** Speed of particle A after collision will be, $$\mathsf{V}_{_1} = \frac{m_1 - m_2}{m_1 + m_2} \cdot \mathsf{u}_{_1} + \frac{2m_2}{m_1 + m_2} \cdot \mathsf{u}_{_2}$$ $$V_1 = \frac{\frac{m}{2} - m/3}{\frac{m}{2} + m/3} V_0 = V_0/5$$ de-Broglie wave length of particle A after collision will be $$\lambda' = \frac{h}{\frac{m}{2} \cdot \frac{V_0}{5}} = 5. \frac{h}{\frac{m}{2} \cdot V_0} = 5\lambda_0$$ \Rightarrow change in wavelength $\Delta \lambda = 4\lambda_0$ Q.11 Blocks of masses m, 2m, 4m and 8m are arranged in a line on a frictionless floor. Another block of mass m, moving with speed v along the same line (see figure) collides with mass m in perfectly inelastic manner. All the subsequent collisions are also perfectly inelastic. By the time the last block of mass 8m starts moving the total energy loss is p% of the original energy. Value of 'p' is close to: द्रव्यमान m, 2m, 4m और 8m के गुटके एक घर्षण रहित फर्श पर एक सीधी रेखा पर रखे हुए हैं। द्रव्यमान m का एक गुटका इसी रेखा पर v गति से चलते हुए m द्रव्यमान के गुटके से पूर्णतः अप्रत्यास्थ टक्कर करता है (चित्र देखें) इसके बाद होने वाली सभी टक्करें भी पूर्णतः अप्रत्यास्थ है। इस प्रकार जब तक 8m द्रव्यमान का गुटका चलना शुरू करता है तब तक मूल ऊर्जा की p% ऊर्जा की क्षति हो चुकी होती है। 'p' का निकटतम मान है: **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises **ANSWER KEY** हमारा विश्वास... हर एक विद्यार्थी है खास Sol. 1 There will be total 4 collisions in each collision K.E. decreasing by 50% $$E_f = \frac{1}{2^4} E_i = \frac{E_i}{16} = 6.25\%$$ i.e. 93.75 % loss Q.12 Given figure shows few data points in a photo-electric effect experiment for a certain metal. The minimum energy for ejection of electron from its surface is: (Plancks constant h = 6.62×10^{-34} J.s) दिये गये चित्र में एक धातु पर प्रकाश विद्युत प्रभाव के प्रयोग के कुछ आँकड़ो के बिन्दु दिखाये गये हैं। इस धातु की सतह से इलैक्ट्रॉन उत्सर्जित करने के लिये न्युनतम आवश्यक ऊर्जा का मान है : (प्लांक स्थिरांक $h = 6.62 \times 10^{-34} J.s$) (1) 2.10 eV (2) 2.27 eV (4) 1.93 eV Sol. Threshold energy = $\phi = hf_0$, Here $f_0 = 5.5 \times 10^{14} Hz$ $\phi = hf_0 = 6.62 \times 10^{-34} \times 5.5 \times 10^{14}$ $= 36.41 \times 10^{-20}$ J = 2.27 eV **Q.13** The specific heat of water = $4200 \text{ J kg}^{-1}\text{K}^{-1}$ and the latent heat of ice = $3.4 \times 10^5 \text{ J kg}^{-1}$. 100 grams of ice at 0°C is placed in 200 g of water at 25°C. The amount of ice that will melt as the temperature of water reaches 0°C is close to (in grams): पानी की विशिष्ट ऊष्मा $= 4200 \, \mathrm{J \, kg^{-1}} \mathrm{K^{-1}}$ तथा बर्फ के पिघलने की गृप्त ऊष्मा $= 3.4 \times 10^5 \, \mathrm{J \, kg^{-1}}$ है। $0^{\circ}\mathrm{C}$ की $100 \, \mathrm{g}$ बर्फ को 25°C के 200 q पानी में डाला जाता है। जब पानी 0°C पर आता है तो बर्फ की कितनी मात्रा (ग्राम में) पिघल जायेगी ? (1)63.8(2)64.6(3)61.7(4)69.3 Sol. 3 > Heat loss by water when it cools down to 0°C is, $Q = m_w s \Delta \theta$ ## CRASH COURSE **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube ### Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises $$= \left(\frac{200}{1000}\right). (4200) (25) = 21000 \text{ J}$$ Which is less than the amount of heat (mL,) required to melt ice completely. $\Delta m_{i}L = 21000 J$ To find the amount of ice melt (Δm_i), take $$\Delta m_i = \frac{21000}{3.4 \times 10^5} \times 10^3 gm = 61.7 \text{ grams}$$ Q.14 A beam of plane polarised light of large cross-sectional area and uniform intensity of 3.3 Wm⁻² falls normally on a polariser (cross sectional area 3×10^{-4} m²) which rotates about its axis with an angular speed of 31.4 rad/s. The energy of light passing through the polariser per revolution, is close to: बड़े अनुप्रस्थ काट क्षेत्रफल एवं एक समान तीव्रता 3.3 Wm-2 वाले एक समतल ध्रवित प्रकाश का पुंज एक ध्रवक (polariser) पर लम्बवत् पड़ता है। ध्रुवक का क्षेत्रफल 3 × 10⁻⁴ m² है। ध्रुवक अपने अक्ष पर कोणीय गति 31.4 rad/s से घूम रहा है। ऐसे में प्रति परिभ्रमण इस ध्रुवक से होकर जाने वाली प्रकाश की ऊर्जा का मान लगभग क्या होगा ? हो : $$(1) 1.0 \times 10^{-4} J$$ (2) $$1.0 \times 10^{-5} \,\mathrm{J}$$ $$(3) 5.0 \times 10^{-4} J$$ (4) $$1.5 \times 10^{-4} \text{ J}$$ Sol. From Malus's law $p = p_0 \cos^2 \omega t$ here, p_0 and p are incident and transmitted intensity respectively. $$\mathsf{E}_{\mathsf{avg}} = <\!p\!> A\!\cdot\!\mathsf{T} = \frac{\mathsf{p}_{\mathsf{0}}}{2}\,\mathsf{T}\,\mathsf{A}$$ $$E_{avg} = \langle P \rangle$$. $TA = \frac{p_0}{2} \cdot \frac{2\pi}{\omega} A = \frac{3.3 \times 3.14 \times 3 \times 10^{-4}}{31.4} = 9.9 \times 10^{-5} \approx 10 \times 10^{-5} \approx 1 \times 10^{-4} J$ Q.15 For a transverse wave travelling along a straight line, the distance between two peaks (crests) is 5m, while the distance between one crest and one trough is 1.5m. The possible wavelengths (in m) of the waves are: एक सीधी रेखा पर चलने वाली एक अनुप्रस्थ तरंग के दो शीर्षों के बीच की दूरी 5m है जबकि इसके एक शीर्ष और एक गर्त के बीच की दूरी 1.5m है। तरंग के संभावित तरंगदैध्यों के मीटर में मान हैं: (2) 1, 2, 3,..... (3) $$\frac{1}{2}$$, $\frac{1}{4}$, $\frac{1}{6}$,.... (4) $\frac{1}{1}$, $\frac{1}{3}$, $\frac{1}{5}$,.... $$(4) \frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \dots$$ Sol. Given trough to crest distance $$1.5 = (2n_1 + 1) \lambda/2$$...(2) and crest to crest distance is $$5 = n_2 \lambda$$ $$n_1 & n_2 \text{ are integer} n_1 = 1, n_2 = 5$$ $n_1 = 2$, n_2 is not integer $n_1 = 3$, n_2 is not integer $$n_1 = 4$$, $n_2 = 15$, $$\lambda = 1/3$$ ### CRASH COURSE **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 Doubt Support Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises **ANSWER KEY** हमारा विश्वास... हर एक विद्यार्थी है ख़ास **Q.16** Match the C_{D}/C_{V} ratio for ideal gases with different type of molecules: | Molecule Type | C_P/C_V | |----------------------------------|-----------| | (A) Monoatomic | (İ) 7/5 | | (B) Diatomic rigid molecules | (II) 9/7 | | (C) Diatomic non-rigid molecules | (III) 4/3 | | (D) Triatomic rigid molecules | (IV) 5/3 | भिन्न-भिन्न अणुओं से बनी आदर्श गैसे के लिये नीचे दी गयी सारिणी से अणु के प्रकार और गैस के Cp/Cv अनुपात का मेल करें : | अणु के प्रकार | अण | के | प्रकार | |---------------|----|----|--------| |---------------|----|----|--------| $$C_p/C_v$$ Sol. $$\gamma = C_p/C_v$$ $$\gamma_A = 1 + \frac{2}{3} = 5/3$$ $$\gamma_{\rm B} = 1 + \frac{2}{5} = 7/5$$ $$\gamma_{\rm C} = 1 + \frac{2}{7} = 9/7$$ $$\gamma_D = 1 + \frac{2}{6} = 4/3$$ **Q.17** Two point charges 4q and -q are fixed on the x-axis at $x = -\frac{d}{2}$ and $x = \frac{d}{2}$, respectively. If a third point charge 'q' is taken from the origin to x = d along the semicircle as shown in the figure, the energy of the charge will: ### **CRASH COURSE** **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube ### Go Premium at ₹ 1100 - ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises ## Motion[®] (1) decrease by $$\frac{q^2}{4\pi \in_0 d}$$ (2) decrease by $$\frac{4q^2}{3\pi \in_0 d}$$ (3) increase by $$\frac{3q^2}{4\pi \in_0 d}$$ (4) increase by $$\frac{2q^2}{3\pi \in_0 d}$$ दो बिन्दु आवेश 4q और -q x-अक्ष पर क्रमशः $x=-\frac{d}{2}$ व $x=\frac{d}{2}$ पर रखे हुए हैं। यदि एक तीसरा बिन्दु आवेश 'q' को मूल बिन्दु से x=d पर चित्र में दिखाये अर्द्धवत्त पर ले जाया जाये तो इस आवेश की ऊर्जा : (1) $$\frac{q^2}{4\pi \in_0 d}$$ मात्रा से घटेगी (2) $$\frac{4q^2}{3\pi \in_0 d}$$ मात्रा से घटेगी (3) $$\frac{3q^2}{4\pi \in_0 d}$$ मात्रा से बढ़ेगी (4) $$\frac{2q^2}{3\pi \in_0 d}$$ मात्रा से बढ़ेगी **Sol. 2** Initial and final potential energy are, $$U_{i} = \frac{1}{4\pi\epsilon_{0}} \left[\frac{4q^{2}}{\left(\frac{d}{2}\right)} - \frac{q^{2}}{\left(\frac{d}{2}\right)} \right]$$ $$U_{_{f}}=\ \frac{1}{4\pi\epsilon_{0}}\left[\frac{4q^{2}}{\left(\frac{3d}{2}\right)}-\frac{q^{2}}{\left(\frac{d}{2}\right)}\right]$$ $$\begin{split} &\mathsf{U_f} - \mathsf{U_i} = \Delta \mathsf{U} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{4q.q}{(3\,\mathrm{d}/2)} - \frac{1}{4\pi\varepsilon_0} \cdot \frac{4q.q}{(d\,/2)} \\ &= \frac{4q^2}{4\pi\varepsilon_0} \bigg(\frac{2}{d}\bigg) \bigg(-\frac{2}{3}\bigg) \\ &= (-) \, \frac{4q^2}{3\pi\varepsilon_0.d} = \mathrm{decrease} \; \mathrm{by} \; (-) \end{split}$$ ### **CRASH COURSE** **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube ### Go Premium at ₹ 1100 Doubt Support ◆ Advanced Level Test Access Live Test Paper Discussion ◆ Final Revision Exercises **ANSWER KEY** हमारा विश्वास... हर एक विद्यार्थी है ख़ास Q.18 A Tennis ball is released from a height h and after freely falling on a wooden floor it rebounds and reaches height $\frac{h}{2}$. The velocity versus height of the ball during its motion may be represented graphically by: (graphs are drawn schematically and are not to scale) एक टेनिस गेंद h ऊँचाई से छोड़ी जाती है और स्वतन्त्र रूप से एक लकड़ी के फर्श पर टकराकर यह $\frac{h}{2}$ ऊँचाई तक पहुँचती है। इसके लिये गति के दौरान गेंद के वेग और ऊँचाई के बीच संबंध निम्न में से किस ग्राफ द्वारा दिखाया जाता है: (ग्राफ संकेतात्मक हैं) Sol. 1 \rightarrow V, h curve will be parabolic as for motion under gratity $v^2 = u^2 + 2gh$ - → downward velocity is negative and upward is positive - \rightarrow when ball is coming down graph will be in IV quadrant i.e. v is -ve and when going up graph will be e in I quadrant i.e. v is +ve. - Dimensional formula for thermal conductivity is (here K denotes the temperature): तापीय चालकता के लिये विमिय सूत्र (dimensional formula) होगा (यहाँ पर K तापमान दर्शाता है): - (1) MLT-3 K-1 - (2) MLT⁻² K⁻² - (4) MLT-3 K Sol. Thermal current during steady state conduction of heat along a rod is, $$\frac{dQ}{dt} = -KA \frac{dT}{dx}$$ Using dimensional analysis we get [M¹L¹T⁻³ k⁻¹] FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises ## Motion **Q.20** Take the breakdown voltage of the zener diode used in the given circuit as 6V. For the input voltage shown in figure below, the time variation of the output voltage is : (Graphs drawn are schematic and not to scale) दिये गये परिपथ में लगे ज़ीनर डायोडों की भंजन वोल्टता (breakdown voltage) 6V लें। तब चित्र में दिखायी गये निवेश (input) वोल्टता के लिये निर्गम (output) वोल्टता समय के साथ किस प्रकार बदलेगी ? (चित्र सांकेतिक है) Sol. 3 ### **CRASH COURSE** **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises **ANSWER KEY** हमारा विश्वास... हर एक विद्यार्थी है ख़ास Q.21 In the line spectra of hydrogen atoms, difference between the largest and the shortest wavelengths of the Lyman series is 304Å. The corresponding difference for the Paschen series in Å is: हाइड्रोजन परमाणु के स्पेक्ट्रम की लाइमन श्रेणी में सबसे लम्बी और सबसे छोटी तरंगदैध्यौं की लम्बाई में 304Å का अन्तर है। तब पाशन श्रेणी की सबसे लम्बी और सबसे छोटी तरंगदैर्ध्यों की लम्बाई में Å में अन्तर होगा Sol. For shortest wave length in Lyman, we have $$\frac{1}{\lambda} = R[1]$$ (i.e. $n = \infty$ to $n = 1$) For longest wave length in Lyman $$\frac{1}{\lambda'} = R \left[1 - \frac{1}{4} \right] = \frac{3R}{4}$$ In Paschen series, for shortest wave length $$\frac{1}{\lambda_{s}} = R \left(\frac{1}{3^{2}} - \frac{1}{\left(\infty\right)^{2}} \right)$$ $$\frac{1}{\lambda_a} = R\left(\frac{1}{3^2}\right) = \frac{R}{9}$$ And for longest wave length $$\frac{1}{\lambda_l} = R \left(\frac{1}{3^2} - \frac{1}{4^2} \right) = \frac{7R}{144}$$ Now, taking ratio we get $(\lambda_{1} - \lambda_{2}) = 10553 \text{ Å}$ Q.22 A closed vessel contains 0.1 mole of a monoatomic ideal gas at 200 K. If 0.05 mole of the same gas at 400 K is added to it, the final equilibrium temperature (in K) of the gas in the vessel will be close एक बंद पात्र 200 K पर एक एकल परमाणुक आदर्श गैस के 0.1 मोल रखता है। यदि 400 K पर समान गैस के 0.05 मोल इसमें जोड़े जाते है, तब पात्र में गैस का अंतिम साम्य तापमान (K में) लगभग होगा _____। Sol. 267 $$(0.1) \left(\frac{3}{2}R\right) (T-200) = (0.05) \left(\frac{3}{2}R\right) (400-T)$$ T = 266.6 K ### **CRASH COURSE FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises ## Motion **Q.23** ABC is a plane lamina of the shape of an equilateral triangle. D, E are mid points of AB, AC and G is the centroid of the lamina. Moment of inertia of the lamina about an axis passing through G and perpendicular to the plane ABC is I_0 . If part ADE is removed, the moment of inertia of the remaining part about the same axis is $\frac{NI_0}{16}$ where N is an integer. Value of N is ______. चित्र में ABC एक समबाहु त्रिभुज के आकार की परत (lamina) है। इसमें D और E क्रमशः AB और AC के मध्य—बिन्दु है तथा G इस परत का केन्द्रक है। केन्द्रक से होकर जाने वाले ABC तल के लम्बवत् अक्ष के सापेक्ष परत का जड़त्व आघूर्ण $I_{\scriptscriptstyle D}$ है। यदि परत से ADE भाग को हटा दिया जाय तो बचे भाग का इसी अक्ष के सापेक्ष जड़त्व आधूर्ण $\frac{NI_0}{16}$ (N एक पूर्णांक है) हो जाता है। N का मान है Sol. 11 If m is mass of lamina and l is its side length, then moment of inertia of lamina about an axis passing through G and perpendicular to plane is I_0 . Let $$I_0 = kml^2$$ $$I_{\text{DEF}} = K \left(\frac{m}{4}\right) \left(\frac{\ell}{2}\right)^2 = \left(\frac{I_0}{16}\right)$$ and $$I_{ADE} = I_{BDE} = I_{EFC} = I$$ (say) Then, $$3I = I_0 - \frac{I_0}{16} = \frac{15I_0}{16}$$ $$\Rightarrow I = \frac{5I_0}{16}$$ $$I_{\text{remaining}} = 2I + \frac{I_0}{16} = \frac{11I_0}{16}$$ **Q.24** In a compound microscope, the magnified virtual image is formed at a distance of 25 cm from the eye-piece. The focal length of its objective lens is 1 cm. If the magnification is 100 and the tube length of the microscope is 20 cm, then the focal length of the eye-piece lens (in cm) is ______. एक संयुक्त सूक्ष्मदर्शी (compound microscope) में आवर्धित आभासी प्रतिबिम्ब (magnified virtual image) नेत्रिका से 25 cm दूरी पर बनता है। इसके अभिदश्यक लेन्स की फोकस दूरी 1 cm है। यदि आवर्धन 100 हो और सूक्ष्मदर्शी की नली की लम्बाई 20 cm हो तो इसके नेत्रिका लेन्स की फोकस दूरी (cm में) होगी ______। ### **CRASH COURSE** **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube ### Go Premium at ₹ 1100 - Doubt Support ◆ Advanced Level Test Access - ◆ Live Test Paper Discussion ◆ Final Revision Exercises ## Motion ### **JEE MAIN 2020** **ANSWER KEY** हमारा विश्वास... हर एक विद्यार्थी है खास Sol. $$L = 20$$, $f_0 = 1$ cm, $M = 100$ $$M = \frac{V_0}{U_0} \left(1 + \frac{D}{f_0} \right)$$ $$M = \frac{L}{f_0} \left(1 + \frac{D}{f_0} \right) \qquad [v_0 \approx L, u_0 \approx f_0]$$ $$[v_0 \approx L, u_0 \approx f_0]$$ $$\Rightarrow 100 = \left(\frac{20}{1}\right) \left[1 + \frac{25}{f_e}\right]$$ on solving we get $f_e = 6.25 \text{ cm}$ **Q.25** A circular disc of mass M and radius R is rotating about its axis with angular speed ω_1 . If another stationary disc having radius $\frac{R}{2}$ and same mass M is droped co-axially on to the rotating disc. Gradually both discs attain constant angular speed ω_2 . The energy lost in the process is p% of the initial energy. Value of p is ______. द्रव्यमान M तथा त्रिज्या R की एक डिस्क अपने अक्ष पर कोणीय गति ω_1 से घूम रही है। इस डिस्क पर एक स्थिर डिस्क जिसका द्रव्यमान M पर त्रिज्या $\frac{R}{2}$ है समाक्षतः (coaxially) रख दी जाती है। जिससे धीरे—धीरे दोनों डिस्क अन्त में एक साथ कोणीय गति ω_2 से घूमने लगती है। इस प्रक्रिया में मूल ऊर्जा की p% ऊर्जा की क्षति हो जाती है। p का मान है _____। Sol. $$I_f \omega_f = I_i \omega_i$$ $$I_{i} = \frac{MR^2}{2}$$ $$I_f = \frac{MR^2}{2} + \frac{M(R/2)^2}{2} = \frac{5}{4} \cdot \frac{MR^2}{2}$$ $$\left[\frac{MR^2}{2} + \frac{M}{2} \left(\frac{R}{2}\right)^2\right] \omega' = \left(\frac{MR^2}{2}\right) \omega$$ $$\left[\frac{MR^2}{2}.\left(\frac{5}{4}\right)\right]\omega' = \frac{MR^2}{2}\omega$$ $$\omega' = \frac{4}{5} \omega$$ loss of K.E. = $$\frac{Loss}{K_i} \times 100 = \frac{\omega^2 - \omega'^2 (5/4)}{\omega^2} \times 100$$ $$\frac{\omega^2 - \frac{16}{25}\omega^2 \left(\frac{5}{4}\right)}{\omega^2} = \left(1 - \frac{80}{100}\right) \times 100$$ ### CRASH COURSE **FOR JEE ADVANCED 2020** FREE Online Lectures Available on You Tube ### Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises # जब इन्होने पूरा किया अपना सपना तो आप भी पा सकते है लक्ष्य अपना ### **JEE MAIN RESULT 2019** 335 13th (2019) Shiv Modi 318 **Ritik Bansal** 308 300 ### **KOTA'S PIONEER IN DIGITAL EDUCATION** 1,95,00,000+ viewers | 72,67,900+ viewing hours | 2,11,000+ Subscribers | SERVICES | SILVER | GOLD | PLATINUM | |----------------------------------------------------------------------|------------|------------|----------| | Classroom Lectures (VOD) | | | | | Live interaction | NA | | | | Doubt Support | NA | | | | Academic & Technical Support | NA | | | | Complete access to all content | NA | | | | Classroom Study Material | NA | | | | Exercise Sheets | NA | | | | Recorded Video Solutions | NA | 8 | | | Online Test Series | NA | | | | Revision Material | NA | | | | Upgrade to Regular Classroom program | Chargeable | Chargeable | Free | | Physical Classroom | NA | NA | | | Computer Based Test | NA | NA | | | Student Performance Report | NA | NA | | | Workshop & Camp | NA | NA | | | Motion Solution Lab- Supervised learning and instant doubt clearance | NA | NA | | | Personalised guidance and mentoring | NA | NA | | ### **FEE STRUCTURE** | CLASS | SILVER | GOLD | PLATINUM | |-----------|--------|----------|----------| | 7th/8th | FREE | ₹ 12,000 | ₹ 35,000 | | 9th/10th | FREE | ₹ 15,000 | ₹ 40,000 | | 11th | FREE | ₹ 29,999 | ₹ 49,999 | | 12th | FREE | ₹ 39,999 | ₹ 54,999 | | 12th Pass | FREE | ₹ 39.999 | ₹ 59.999 | - + Student Kit will be provided at extra cost to Platinum Student. - SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures - GOLD (Online) can be converted to regular classroom (Any $MOTION\,Center)\,by\,paying\,difference\,amount\,after\,lockdown.$ - *** PLATINUM (Online + Regular) can be converted to regular classroom (Any MOTION Center) without any cost after lockdown. New Batch Starting from: 16 & 23 September 2020 **Zero Cost EMI Available**