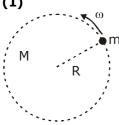


QUESTION PAPER WITH SOLUTION

PHYSICS _ 2 Sep. _ SHIFT - 1

H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |⊠: info@motion.ac.in

The mass density of a spherical galaxy K varies as $\frac{K}{r}$ over a large distance 'r' from its centre. In **Q.1** that region, a small star is in a circular orbit of radius R. Then the period of revolution, T depends on


एक गोलाकार गैलेक्सी में इसके केन्द्र से बहुत दूरी 'r' पर इसका द्रव्यमान घनत्व $\frac{K}{r}$ फलन द्वारा दिया जाता है। इस क्षेत्र में एक छोटा तारा R त्रिज्या को एक वत्ताकार कक्षा में घूम रहा है। तब इसका आवर्तकाल T इसकी त्रिज्या R पर इस प्रकार निर्भर करेगा:

(1)
$$T^2 \propto R$$

(2)
$$T^2 \propto R^3$$

(2)
$$T^2 \propto R^3$$
 (3) $T^2 \propto \frac{1}{R^3}$ (4) $T \propto R$

Sol.

Mass of galaxy = $\int_{1}^{\kappa} \rho dv$

$$= \int_{0}^{R} \frac{k}{r} 4\pi r^{2} dr = 4\pi k \int_{0}^{R} r dr$$

$$M = \frac{4\pi kR^2}{2} = k_1 R^2$$

 $F = m\omega^2 R$

$$\frac{GMm}{R^2}=m\omega^2R$$

$$\frac{Gk_{1}R^{2}}{R^{2}}=\omega^{2}R$$

$$\therefore \omega^2 = \frac{k_2}{R}$$

$$\omega = \sqrt{\frac{k_2}{R}}$$

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{R}{k_2}}$$

$$T = k_3 \sqrt{R}$$

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

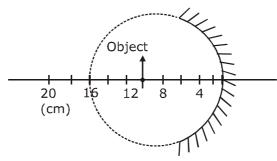
An amplitude modulated wave is represented by the expression $v_m = 5(1 + 0.6 \cos 6280t) \sin (211 \times 10^4 t)$ volts. The minimum and maximum amplitudes of the amplitude modulated wave are, Q.2

एक आयाम मॉडयूलेटेड (amplitude modulated) तरंग को निम्न प्रकार से लिखा जाता है : $v_m = 5(1 + 0.6 \cos 6280t)$ sin (211 x 10⁴ t) volts, इस तरंग के न्यूनतम और अधिकतम आयामों का मान क्रमशः होगाः

(1)
$$\frac{3}{2}$$
 V, 5V

(4)
$$\frac{5}{2}$$
 V, 8V

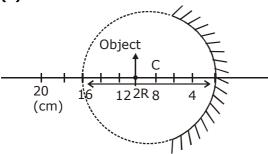
(4) Sol.


$$\frac{A_m}{A_n} = 0.6$$

 $V_{\rm m} = (5+3\cos 6280t)\sin (211\times10^4 t)$ maximum Amp. = 5+3=8 V minimum Amp. = 5-3=2 V

from the given option nearest value of minimum Amplitude = $\frac{5}{2}$ V

Q.3 A spherical mirror is obtained as shown in the figure from a hollow glass sphere. If an object is positioned in front of the mirror, what will be the nature and magnification of the image of the object ? (Figure drawn as schematic and not to scale)


जैसा की चित्र में दिखाया गया है, एक खोखले काँच के गोले से काटकर एक गोलीय दर्पण बनाया जाता है। यदि एक वस्तु को चित्रानुसार दर्पण के आगे रखा जाय तो इसके प्रतिबिम्ब का स्वरूप व आवर्धन निम्न मे से कौन सा होगा ? (चित्र साकेतिक है।)

- (1) Erect, virtual and unmagnified
- (3) Erect, virtual and magnified
- (1) सीधा, आभासी एवं अनावर्धित
- (3) सीधा, आभासी एवं बडा

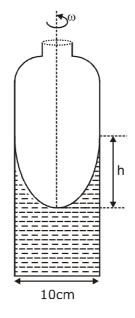
- (2) Inverted, real and magnified
- (4) Inverted, real and unmagnified
- (2) उल्टा, वास्तविक एवं बड़ा
- (4) उल्टा, वास्तविक एवं अनावर्धित

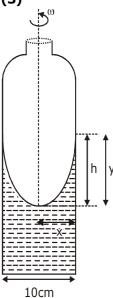
Sol.

- \therefore beyond C i.e. $-\infty < u < C$
- : real, inverted and unmagnified

CRASH COURSE

FOR JEE ADVANCED 2020


FREE Online Lectures Available on You Tube


Go Premium at ₹ 1100

- ◆ Doubt Support ◆ Advanced Level Test Access
- ◆ Live Test Paper Discussion ◆ Final Revision Exercises

- **Q.4** A cylindrical vessel containing a liquid is rotated about its axis so that the liquid rises at its sides as shown in the figure. The radius of vessel is 5 cm an and the angular speed of rotation is ω rad s⁻¹. The difference in the height, h (in cm) of liquid at the centre of vessel and at the side will be: एक बेलनाकार बर्तन, जिसमें एक द्रव भरा हुआ है, को इसके अक्ष के सापेक्ष घुमाने पर द्रव इसके किनारों पर ऊपर की ओर चढ जाता है (चित्र देखें)। बर्तन की त्रिज्या 5 cm है और इसका कोणीय वेग ω rad s⁻¹ है। बर्तन के केन्द्र पर द्रव की ऊँचाई और इसके किनारे पर द्रव की ऊँचाई में अन्तर, h (cm में) होगा:
 - (1) $\frac{5\omega^2}{2g}$

Sol.

CRASH COURSE FOR JEE ADVANCED 2020

at x = 5cm, y=h

 $h=\frac{\omega^2(5)^2}{2g}=\frac{25\omega^2}{2g}$

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

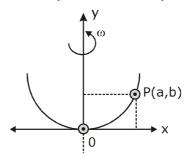
MOTION

If speed V, area A and force F are chosen as fundamental units, then the dimension of Young's **Q.5** modulus will be

यदि गति V, क्षेत्रफल A और बल F को मूल यूनिट की तरह लिया जाय तो यंग के गुणांक की विमाएँ होगी:

- (1) FA²V⁻³
- (2) FA^2V^{-2}
- (3) $FA^{-1}V^0$
- (4) FA2V-1

Sol. (3)


 $Y = k [F]^x [A]^y [V]^z$

 $[ML^{1}T^{-2}] = [MLT^{-2}]^{x} [L^{2}]^{y} [LT^{-1}]^{z}$

 $\begin{bmatrix} ML^{1}T^{-2} \end{bmatrix} = \begin{bmatrix} M^{x} L^{x+2y+z}T^{-2x-z} \end{bmatrix}$ x = 1, -2x-z = -2, x + 2y + z = -1

 \Rightarrow z = 0 \Rightarrow y = -1

A bead of mass m stays at point P (a, b) on a wire bent in the shape of a parabola **Q.6** $y = 4Cx^2$ and rotating with angular speed ω (see figure). The value of ω is (neglect friction): कोणीय वेग ω से घूमते हुए एक तार, जिसकी आकित $y = 4Cx^2$ परावलय (parabola) जैसी है (चित्र देखे), पर m द्रव्यमान की एक मणिका बिन्दु P(a, b) पर स्थिर है। ω का मान है। (घर्षण को नगण्य मानें) :

- (2) 2√gC
- (4) $2\sqrt{2gC}$

Sol.

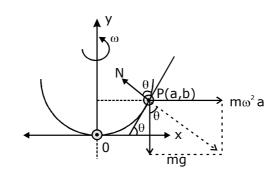
$$y = 4 cx^2$$

$$\frac{dy}{dx} = 8cx$$

 $N \cos \theta = mg$

 $N \sin \theta = m\omega^2 a$

$$\tan\theta = \frac{m\omega^2 a}{mg}$$


$$\tan\theta = \frac{dy}{dx} = 8cx$$

$$8\,cx=\frac{\omega^2a}{g}$$

$$(x = a), 8 c a = \frac{\omega^2 a}{g}$$

$$\sqrt{8cg} = \omega$$

$$2\sqrt{2gc} = \omega$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है खास

- 0.7 Magnetic materials used for making permanent magnets (P) and magnets in a transformer (T) have different properties of the following, which property best matches for the type of magnet required?
 - (1) P: Small retentivity, large coercivity (2) P: Large retentivity, large coercivity
 - (3) T: Large retentivity, large coercivity (4) T: Large retentivity, small coercivity स्थायी चुबंक (P) और ट्रान्सफार्मर में प्रयोग आने वाले चुबंक (T) के लिये अलग–अलग चुंबकीय पदार्थी का प्रयोग किया जाता है। निम्नलिखित में से इन पदार्थी का कौन-सा गुण उनके प्रयोग से सबसे अच्छा मेल दिखाता है ?
 - (1) P: कम धारणशीलता. अधिक निग्राहिता (2) P: अधिक धारणशीलता, अधिक निग्राहिता
 - (3) T: अधिक धारणशीलता, अधिक निग्राहिता (4) T: अधिक धारणशीलता, कम निग्राहिता
- Sol. (2)

Permanent magnet must retain for long use and should not be easily demagnetised.

Interference fringes are observed on a screen by illuminating two thin slits 1 mm apart with a light Q. 8 source (λ = 632.8 nm). The distance between the screen and the slits is 100 cm. If a bright fringe is observed on screen at a distance of 1.27 mm from the central bright fringe, then the path difference between the waves, which are reaching this point from the slits is close to:

दो झिरियाँ के बीच की दूरी 1 mm है और इन पर ($\lambda = 632.8 \, \mathrm{nm}$) तंरगदैर्ध्य का प्रकाश डालकर एक पर्दे पर इसकी व्यक्तिकरण फ्रिन्जें देखी जाती है। झिरियों और पर्दे के बीच की दूरी 100 cm है। यदि पर्दे पर केन्द्रीय दीप्त फ्रिन्ज से 1.27mm दूरी पर एक दीप्त फ्रिन्ज दिखायी देती है, तो इस फ्रिन्ज पर झिरियों से पहुँचने वाली तंरगो का पथांतर निम्न में से किसके निकट है ?

- (1) 2.05 µm
- (2) 2.87 nm
- (3) 2 nm
- (4) 1.27 μm

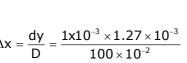
Sol. (4)

given, d = 1mm

 $\lambda = 632.8 \text{ nm}$

D = 100cm

 $y = 1.27 \, mm$


 $\Delta x = d \sin \theta$

 $:: (\theta = small)$

 $\Lambda x = d \tan \theta$

$$\Delta x = \frac{dy}{D} = \frac{1x10^{-3} \times 1.27 \times 10^{-3}}{100 \times 10^{-2}}$$

- $= 1.27 \times 10^{-6} \,\mathrm{m}$
- $= 1.27 \mu m$

एक गैस के मिश्रण में 3 मोल ऑक्सीजन और 5 मोल ऑर्गन दोनो T तापमान पर है। यह मानते हुए कि दोनों गैस आदर्श है तथा ऑक्सीजन में अण् दढ़ हैं, इस मिश्रण की आंतरिक ऊर्जा (RT की इकाई में) होगी:

- (1) 11
- (2)13
- (3)15
- (4)20

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

Sol. (3)

$$U = n_{1}C_{v_{1}}T + n_{2}C_{v_{2}}T$$

$$=3\times\frac{5}{2}RT+5x\frac{3}{2}RT$$

$$=\frac{30}{2}RT=15RT$$

Q. 10 A plane electromagnetic wave, has frequency of 2.0×10^{10} Hz and its energy density is 1.02×10^{-8} J/m³ in vacuum. The amplitude of the magnetic field of the wave is close

(
$$\frac{1}{4\pi\epsilon_0}=9\times 10^9\,\frac{Nm^2}{C^2}$$
 and speed of light = $3\times 10^8~ms^{-1}$):

एक समतल विद्युत—चुम्बकीय तंरग की आवित $2.0 \times 10^{10} \, \text{Hz}$ है तथा इसका निर्वात में ऊर्जा घनत्व $1.02 \times 10^{-8} \, \text{J/m}^3$ है। इससे संबंधित चुम्बकीय क्षेत्र का आयाम निम्न में से किसके निकट होगा

(
$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \, \frac{Nm^2}{C^2} \,$$
 प्रकाश की निर्वात में गति = $3 \times 10^8 \, ms^{-1}$):

(1) 160 nT

(2) 150 nT

(3) 180 nT

(4) 190 nT

Sol. (1)

energy density =
$$\frac{B_0^2}{2\mu_0}$$
 ...(1)

&
$$C = \frac{1}{\sqrt{\mu_0 \in_0}}$$
(2)

$$\mu_0 = \frac{1}{C^2} \in \Omega$$

$$B=\sqrt{U\times 2\mu_0}$$

$$= \sqrt{1.02 \times 10^{-8} \times 2 \times \frac{1}{9 \times 10^{16}} \, 4\pi \times 9 \times 10^{9}}$$

$$= \sqrt{25.62 \times 10^{-15}}$$

$$\cong \sqrt{25600\times 10^{-18}}$$

$$\approx 160 \times 10^{-9}$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

Q. 11 Consider four conducting materials copper, tungsten, mercury and aluminium with resistivity ρ_{c} , ρ_{T} , ρ_m and ρ_A respectively. Then:

चार सुचालक पदार्थी तांबा, टंगस्टन, पारा व ऐलुमिनियम के साथ प्रतिरोधकता क्रमशः ρ_{c} , ρ_{T} , ρ_{m} और ρ_{A} है। तबः

(1)
$$\rho_{\rm C} > \rho_{\rm A} > \rho_{\rm T}$$

$$(2) \rho_{\Lambda} > \rho_{M} > \rho_{C}$$

(2)
$$\rho_{A} > \rho_{M} > \rho_{C}$$
 (3) $\rho_{A} > \rho_{T} > \rho_{C}$ (4) $\rho_{M} > \rho_{A} > \rho_{C}$

$$(4)\rho_{\rm M} > \rho_{\rm A} > \rho_{\rm C}$$

Sol.

(Theoretical concept)

Q.12 A beam of protons with speed 4 x 10⁵ ms⁻¹ enters a uniform magnetic field of 0.3 T at an angle of 60° to the magnetic field. The pitch of the resulting helical path of protons is close to: (Mass of the pr oton = 1.67 \times 10⁻²⁷ kg, charge of the proton = 1.69 \times 10⁻¹⁹ C)

4 x 10⁵ ms⁻¹ गति से चलने वाले प्रोटॉनों का एक पूंज 0.3 T मान के एकसमान चुम्बकीय क्षेत्र में प्रवेश करता है। प्रवेश करते समय पुंज चुम्बकीय क्षेत्र की दिशा से 60° का कोण बनाता है। इसके परिणाम स्वरूप बनने वाले प्रोटॉन के कुंडलीय (helical) पथ की पिच लगभग होगीः (प्रोटॉन का द्रव्यमान = 1.67×10^{-27} kg, प्रोटॉन का आवेश = 1.69×10^{-19} C)

Sol. **(1)**

pitch = Vcos 60° × T =
$$\frac{V}{2} \frac{2\pi m}{eB}$$

$$=4\times10^5\times\frac{1}{2}\times\frac{2\pi}{0.3}\left(\frac{m}{e}\right)$$

$$=\frac{4\pi\times10^{5}\times10^{-8}}{0.3}\ =\frac{4\times3.14\times10^{-3}}{3\times10^{-1}}$$

$$\sim 4 \times 10^{-2} \,\mathrm{m}$$

≈ 4cm

Q.13 Two identical strings X and Z made of same material have tension T_x and T_z in them. If their fundamental frequencies are 450 Hz and 300 Hz, respectively, then the ratio T_x/T_z is : दो समरूप डोरियाँ (X और Z) एक ही धातु से बनी है और उन पर तनाव T, और T, है। यदि उनकी मूल आवित क्रमशः 450 Hz और 300 Hz, हो, तो T_x/T_z का मान होगा :

(1)2.25

(1)Sol.

$$f = \frac{1}{2L} \sqrt{\frac{T}{u}}$$

given, $\mu_x = \mu_z \& L_x = L_z$ as identical

∴
$$f \propto \sqrt{T}$$

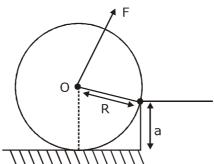
$$\Rightarrow \frac{\mathsf{T}_{\mathsf{x}}}{\mathsf{T}_{\mathsf{z}}} = \frac{f_{\mathsf{x}}^2}{f_{\mathsf{z}}^2} = \left(\frac{450}{300}\right)^2 = \left(\frac{3}{2}\right)^2 = \frac{9}{4}$$

$$\frac{T_x}{T_v} = 2.25$$

CRASH COURSE

FOR JEE ADVANCED 2020

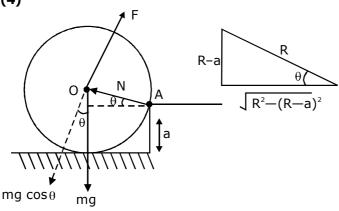
FREE Online Lectures Available on You Tube


Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION


Q.14 A uniform cylinder of mass M and radius R is to be pulled over a step of height a (a < R) by applying a force F at its centre 'O' perpendicular to the plane through the axes of the cylinder on the edge of the step (see figure). The minimum value of F required is द्रव्यमान M तथा त्रिज्या R के एक वेलन (cylinder) को a (a < R) ऊँचाई की एक सीढ़ी के ऊपर खींचना है। इसके लिये इसके केन्द्र 'O' पर एक बल F, जो कि बेलन के अक्ष और सीढ़ी के किनारे से होकर जाने वाले समतल के लम्बवत् है, लगाया जाता है। (चित्र देखे) F का न्यूनतम मान है:

$$(1) Mg \sqrt{\left(\frac{R}{R-a}\right)^2 - 1}$$
 $(2) Mg \sqrt{1 - \frac{a^2}{R^2}}$

(4) $Mg\sqrt{1-\left(\frac{R-a}{R}\right)^2}$ (3) Mg $\frac{a}{R}$

(4) Sol.

$$\cos\theta = \frac{\sqrt{R^2 - \left(R - a\right)^2}}{R}$$

$$=\sqrt{\frac{R^2}{R^2}-\left(\frac{R-a}{R}\right)^2}$$

$$= \sqrt{1 - \left(\frac{R - a}{R}\right)^2}$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

to pull up, $\tau_{\text{F}} \geq \tau_{\text{mg}}$

 $FR \ge mq \cos \theta R$

for min F, $F_{min} = mg \cos \theta$

$$F_{min} = mg\sqrt{1 - \left(\frac{R - a}{R}\right)^2}$$

Q.15 In a reactor, 2 kg of $_{92}U^{235}$ fuel is fully used up in 30 days. The energy released per fission is 200 MeV. Given that the Avogadro number, N = 6.023×10^{26} per kilo mole and 1 eV = 1.6×10^{-19} J. The power output of the reactor is close to

एक रिएक्टर में, ₉₂U²³⁵ के 2kg ईधन को पूर्ण रूप से 30 दिन में प्रयोग किया जाता है। प्रति विखण्डन निकलने वाली ऊर्जा 200

MeV है। दिया है एवोगाड्रो संख्या $N = 6.023 \times 10^{26}$ प्रति किलो मोल और $1 \text{ eV} = 1.6 \times 10^{-19}$ J रिएक्टर से निकलने वाली शक्ति लगभग होगी।

(1) 60 MW

(2) 54 MW

(3) 125 MW

(4) 35 MW

Sol. **(1)**

$$n(moles) = \frac{2kg}{235gm} = \frac{2000}{235}$$

no. of nucleus = $N_A \times n$

$$=6.022\times10^{23}\times\frac{2000}{235}$$

$$= 51.25 \times 10^{23}$$

total energy released = $200 \times 51.25 \times 10^{23}$ MeV

$$= 102.5 \times 10^{25} \text{ MeV}$$

=
$$102.5 \times 10^{25} \times 10^{6} \times 1.6 \times 10^{-16}$$
J

$$= 164 \times 10^{6} \, \text{MJ}$$

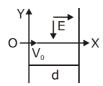
$$power = \frac{164 \times 10^6 \text{MJ}}{30 \times 24 \times 60 \times 60 \, \text{S}}$$

$$= 0.063 \times 10^3 \,\text{MW}$$

≅ 60MW

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

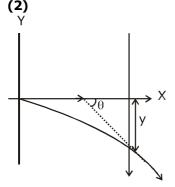

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

Q.16 A charged particle (mass m and charge q) moves along X axis with velocity V_0 . When it passes through the origin it enters a region having uniform electric field $\vec{E} = -E\hat{j}$ which extends upto x = d. Equation of path of electron in the region x > d is :

एक आवेशित कण (द्रव्यमान m और आवेश q) X अक्ष पर V_n गित से चल रहा है। मूल बिन्दु से आगे जाने पर x=0 से x=d तक यह एक समान विद्युत क्षेत्र $\vec{E} = -E\hat{j}$ में चलता है। x = d के बाद विद्युत क्षेत्र नहीं है। (x > d) के लिए) इलैक्ट्रॉन के पथ का समीकरण होगाः



(1)
$$y = \frac{qEd^2}{mV_0^2}x$$

$$\text{(1)} \ y = \frac{qEd^2}{mV_0^2} \ x \qquad \qquad \text{(2)} \ \ y = \frac{qEd}{mV_0^2} \bigg(\frac{d}{2} - x \bigg) \quad \text{(3)} \ \ y = \frac{qEd}{mV_0^2} \bigg(x - d \bigg) \quad \text{(4)} \ \ y = \frac{qEd}{mV_0^2} \ x$$

(4)
$$y = \frac{qEd}{mV_0^2} x$$

Sol.

$$- y = \frac{1}{2} at^2$$

$$-y = \frac{1}{2} \frac{qE}{m} t^2$$

$$X = V_o t$$

$$\Rightarrow t = \frac{x}{V_0}$$

for
$$x \le d$$
,

$$y = -\frac{1}{2} \frac{qE}{m} \frac{x^2}{V_0^2}$$

$$\left. \frac{dy}{dx} \right|_{x=d} = -\frac{1}{2} \frac{qE}{m} \times \frac{2x}{V_0^2} \right|_{x=d}$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Slope =
$$m = \tan \theta = -\frac{qEd}{mV_0^2}$$

equation of straight line, $y = (tan\theta) x + c$

$$= - \left(\frac{qEd}{mv_0^2} \right) x + c$$

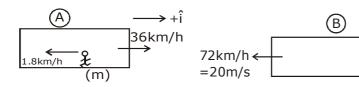
(now for C, at x = d, $y = -\frac{qEd^2}{2mv_0^2}$ put in (4)

$$-\frac{qEd^2}{2mv_0^2} = -\frac{qEd^2}{mV_0^2} + c$$

$$\Rightarrow$$
 c = $\frac{qEd^2}{2mv_0^2}$

for x > d, as no \vec{E}

$$y = -\Bigg(\frac{qEd}{mv_0^2}\Bigg)x + \frac{qEd^2}{2mv_0^2}$$


$$y = \frac{qEd}{mv_0^2} \left(\frac{d}{2} - x \right)$$

Q.17 Train A and train B are running on parallel tracks in the opposite directions with speeds of 36 km/ hour and 72 km/hour, respectively. A person is walking in train A in the direction opposite to its motion with a speed of 1.8 km/hour. Speed (in ms⁻¹) of this person as observed from train B will be close to: (take the distance between the tracks as negligible)

रेलगाड़ियाँ A और B समांतर पटरियों पर विपरीत दिशाओं में क्रमशः 36 km/hour और 72 km/hour गति से दौड़ रही है। रेलगाड़ी A में एक व्यक्ति रेलगाड़ी के चलने की दिशा की विपरीत दिशा में 1.8 km/hour की गति से चल रहा है। यदि इस व्यक्ति को रेलगाड़ी B से देखा जाये तो इसकी गति निम्न में किसके निकटतम होगी: (पटरियों के बीच की दूरी को नगणय माने)

- (1) 29.5 ms⁻¹
- (2) 30.5 ms⁻¹
- (3) 31.5 ms⁻¹
- (4) 28.5 ms⁻¹

(1) Sol.

$$\overrightarrow{V_m}\,=\,\overrightarrow{V_{m/A}}\,+\,\overrightarrow{V_A}$$

$$= (-1.8 \,\hat{i} + 36 \,\hat{i}) \,\text{km/h}$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

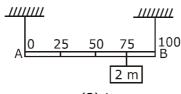
Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

$$= \left(-1.8 \times \frac{5}{18} + 36 \times \frac{5}{18}\right) m \text{ / s}$$

$$= \left(-0.5\hat{i} + 10\hat{i}\right) \text{m/s}$$

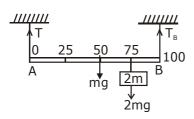

$$\overrightarrow{V_{m/B}} = \overrightarrow{V_{M}} - \overrightarrow{V_{B}}$$

$$=9.5\hat{i} - (-20\hat{i})m/s$$

$$= 29.5 \,\mathrm{m/s}\,\,\hat{\mathrm{i}}$$

Q.18 Shown in the figure is rigid and uniform one meter long rod AB held in horizontal position by two strings tied to its ends and attached to the ceiling. The rod is of mass `m` and has another weight of mass 2 m hung at a distance of 75 cm from A. The tension in the string at A is:

चित्र में एक मीटर लम्बी एक दढ एकसमान छड AB दिखायी गयी है जो इसके छोरों पर बंधी दो डोरियों द्वारा छत से टांगी गयी है और क्षैतिज अवस्था में है। छड़ का द्रव्यमान `m` है और इसके A छोर से 75 cm दूरी पर 2 m द्रव्यमान का एक भार लटकाया गया है। A पर बंधी डोर पर तनाव होगाः


(1) 0.75 mg

(2) 0.5 mg

(3) 1 mg

(4) 2 mg

Sol. (3)

At equilibrium torque about any axis must be zero. Taking the torque about B.

 $T \times 100$ cm = mg \times 50cm + 2mg \times 25cm

T = 1 mg

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है खास

Q.19 The least count of the main scale of a vernier callipers is 1 mm. Its vernier scale is divided into 10 divisions and coincide with 9 divisions of the main scale. When jaws are touching each other, the 7th division of vernier scale coincides with a division of main scale and the zero of vernier scale is lying right side of the zero of main scale. When this vernier is used to measure length of a cylinder the zero of the vernier scale between 3.1 cm and 3.2 cm and 4th VSD coincides with a main scale division. The length of the cylinder is: (VSD is vernier scale division)

एक वर्नियर कैलीपर्स के मुख्य पैमाने (स्केल) का अल्पतमांक 1 mm है। इसके वर्नियर पैमाने (स्केल) पर 10 विभाजन हैं जो कि मुख्य पैमाने के 9 विभाजनों से मिलते है। जब वर्नियर केलिपर्स के जबड़े एक दूसरे को छू रहे हों तो वर्नियर पैमाने का सातवाँ विभाजन मुख्य पैमाने के किसी एक विभाजन से मिलता है और वर्नियर पैमाने का शून्य मुख्य पैमाने के शून्य से थोड़ा दाँयी ओर होता है। अब यदि एक बेलन को वर्नियर के जबड़ों के बीच लगाया जाता है, तो वर्नियर का शून्य 3.1 cm और 3.2 cm के बीच में है तथा वर्नियर का चौथा विभाजन मुख्य पैमाने के एक विभाजन से मिलता है। बेलन की लम्बाई है: (VSD वर्नियर पैमाना विभाजन है)

- (1) 3.21 cm
- (2) 3.07 cm
- (3) 2.99 cm
- (4) 3.2 cm

Sol. (2)

L.C. = 1MSD - 1VSD

L.C. = 0.1MSD

1 MSD = 1mm

L. C. = 0.1 mm

+ve zero error = $+7 \times L.C.$

= 0.7 mm

Reading = $(3.1cm + 4 \times L.C)$ – zero error

= 3.1 cm + 0.4 mm - 0.7 mm

= 3.1 cm - 0.03 cm (as given 1 MSD = 1 mm)

= 3.07 cm

Q. 20 A particle of mass m with an initial velocity $u\hat{i}$ collides perfectly elastically with a mass 3m at rest.

It moves with a velocity v_j^2 after collision, then v is given by:

द्रव्यमान m का एक कण जिसका आरम्भिक वेग 🔐 है 3m द्रव्यमान के एक कण से, जो कि विरामावस्था में है, प्रत्यावस्था टक्कर करता है। यदि टक्कर के बाद m द्रव्यमान वाला कण $\hat{v_1}$ वेग से चल रहा हो तो v का मान है:

(1)
$$V = \frac{1}{\sqrt{6}} U$$

(1)
$$V = \frac{1}{\sqrt{6}}u$$
 (2) $V = \sqrt{\frac{2}{3}}u$ (3) $V = \frac{u}{\sqrt{3}}$ (4) $V = \frac{u}{\sqrt{2}}$

(3)
$$V = \frac{u}{\sqrt{3}}$$

(4)
$$V = \frac{u}{\sqrt{2}}$$

Sol.

(before collision)

 $\vec{p}_i = \vec{p}_f$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

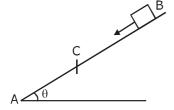
 $mu\hat{i} + 0 = mv\hat{j} + 3m\overrightarrow{V_3}$

$$\frac{mu\,\hat{i}}{3m} - \frac{mv\hat{j}}{3m} = \overrightarrow{V_2}$$

$$\overrightarrow{V_2} = \frac{u}{3}\,\hat{i} - \frac{v}{3}\,\hat{j}$$

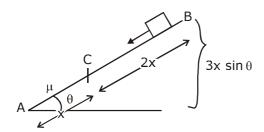
now, K.E is conserved in an elastic collision,

$$\Sigma KE_i = \Sigma KE_f$$


$$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + \frac{1}{2}3m\left(\frac{u^2}{9} + \frac{v^2}{9}\right)$$

$$\Rightarrow u^2 = v^2 + \frac{u^2}{3} + \frac{v^2}{3}$$

$$\frac{2}{3}u^2 = \frac{4}{3}v^2$$


$$\Rightarrow$$
 v = $\frac{u}{\sqrt{2}}$

Q.21

A small block starts slipping down from a point B on an inclined plane AB, which is making an angle θ with the horizontal section BC is smooth and the remaining section CA is rough with a coefficient of friction μ . It is found that the block comes to rest as it reaches the bottom (point A) of the inclined plane. If BC = 2AC, the coefficient of friction is given by μ =k tan θ . The value of k is एक आनत समतल (inclined plane) AB पर एक छोटा गुटका B से फिसलना प्रारम्भ करता है। आनत समतल क्षैतिज से कोण θ पर है (चित्र देखें) । इसका BC भाग घर्षण रहित है और बचे हुए CA भाग पर घर्षण गुणांक µ है। यह देखा जाता है कि यह गुटका आनत तल के नीचे (A पर) पहुँचने पर रूक जाता है। यदि BC = 2AC है, तब घर्षण गुणांक μ=k tan θ है। तब k का मान है ______

Sol. (3)

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

from work energy theorem $\begin{aligned} W_g + W_f &= \Delta \ kE \\ mg \ 3xsin \ \theta - \mu mg \ cos \ \theta \ x &= 0 - 0 \\ \Rightarrow mg 3x sin \ \theta &= \mu mg \ cos \ \theta x \\ 3 \ tan \ \theta &= \mu \\ k &= 3 \end{aligned}$

- Q.22 An engine takes in 5 moles of air at 20°C and 1atm, and compresses it adiabatically to 1/10th of the original volume. Assuming air to be a diatomic ideal gas made up of rigid molecules, the change in its internal energy during this process comes out to be X kJ. The value of X to the nearest integer is ______.

 एक इन्जन 20°C और 1 वायुमण्डल दबाव पर वायु के 5 मोल्स को ऊष्मारोधी प्रक्रिया द्वारा उसका उसके मूल आयतन से 1/10 आयतन तक संपीडन (compression) करता है। वायु को द्विपरमाणुक आदर्श गैस, जिसके अणु दढ़ हो, मानते हुए वायु की आंतरिक ऊर्जा में इस प्रक्रिया द्वारा X kJ का बदलाव आता है X का मान निकटतम पुणांक में है _______।
- Sol. (46)

$$T_2 V_2^{\gamma - 1} \; = \; T_1 V_1^{\gamma - 1}$$

$$T_2 = T_1 \left(\frac{V_1}{V_2} \right)^{\gamma - 1}$$

$$=293 \left(\frac{V}{V/10}\right)^{\frac{7}{5}-1}$$

$$T_2 = 293 \times (10)^{2/5}$$

$$\Delta U = nC_v \Delta T = 5 \times \frac{5}{2} R \left(293 \times 10^{\frac{2}{5}} - 293 \right)$$

$$= \frac{25}{2} R \times 293 \left(10^{\frac{2}{5}} - 1 \right) = \frac{25R}{2} \times 293(2.5 - 1)$$

$$= \frac{25 \times 8.314 \times 293 \times 1.5}{2}$$

$$= 45675 J = 46kJ$$

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

Motion

Q.23 When radiation of wavelength λ is used to illuminate a metallic surface, the stopping potential is V.

When the same surface is illuminated with radiation of wavelength 3λ , the stopping potential is $\frac{V}{A}$.

If the threshold wavelength for the metallic surface is $n\lambda$ then value of n will be _ जब λ तंरगदैर्ध्य का विकिरण एक धातु की सतह पर पड़ता है तो उससे उत्सर्जित इलैक्ट्रॉनों का निरोधी विभव (stopping potential)

V है। यदि इसी सतह पर तंरगदैर्ध्य 3λ का विकिरण पड़े तो निरोधी विभव $\frac{V}{4}$ हो जाता है। यदि इस सतह से इलैक्ट्रॉन उत्सर्जित करने के लिये अधिकतम तंरगदैर्ध्य nλ का प्रयोग किया जा सकता है तो n का मान है

Sol. (9)

$$\frac{hc}{\lambda} = \phi + eV$$

$$\frac{hc}{3\lambda}=\varphi+\frac{eV}{4}$$

$$\frac{\text{eq.}(1)}{\text{eq.}(2)}$$

$$\frac{\text{eq.}(1)}{\text{eq.}(2)} \qquad \qquad 3 = \frac{\phi + eV}{\phi + \frac{eV}{4}}$$

$$3\phi + \frac{3eV}{4} = \phi + eV$$

$$2\phi = \frac{eV}{4}$$

$$\phi = \frac{eV}{8}$$

$$\frac{hc}{\lambda} = \frac{eV}{8} + eV$$

$$=\frac{9}{8}eV$$

$$\therefore eV = \frac{8}{9} \frac{hc}{\lambda}$$

so
$$\phi = \frac{hc}{\lambda} - \frac{8}{9} \frac{hc}{\lambda}$$

$$\phi = \frac{1}{9} \frac{hc}{\lambda}$$

$$\frac{hc}{\lambda_{th}} = \frac{hc}{9\lambda}$$

$$\lambda_{th} = 9\lambda$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

- **Q.24** A circular coil of radius 10 cm is placed in uniform magnetic field of 3.0×10^{-5} T with its plane perpendicular to the field initially. It is rotated at constant angular speed about an axis along the diameter of coil and perpendicular to magnetic field so that it undergoes half of rotation in 0.2s. The maximum value of EMF induced (in μ V) in the coil will be close to the integer _ एक वत्ताकार कुंडली (coil), जिसकी त्रिज्या 10 cm है, 3.0 × 10⁻⁵ T मान के एक समान चुंबकीय क्षेत्र में है, तथा इसका समतल चुबंकीय क्षेत्र के लम्बवत् है। कुंडली को एक अक्ष, जो इसके व्यास पर है तथा चुबंकीय क्षेत्र के लम्बवत् है, पर घुमाया जाता है। इसका कोणीय वेग ऐसा है कि यह 0.2s में आधा चक्कर लगाती है। इसमें प्रेरित विद्युत –वाहक बल का अधिकतम मान (µV में) कितने पूर्णांक के निकट होगा
- Sol. (15) $\phi = BA \cos \omega t$ $E = \frac{-d\phi}{dt} = BA\omega \sin \omega t$

 $=15\mu V$

$$E_{max} = BA \omega \qquad \left(\omega = \frac{\pi}{0.2}\right)$$
$$= 3 \times 10^{-5} \times \pi R^2 \times \frac{\pi}{0.2}$$
$$= 15 \times 10^{-6} V$$

Q.25 A $5\mu F$ capacitor is charged fully by a 220V supply. It is then disconnected from the supply and is connected in series to another uncharged 2.5 µF capacitor. If the energy change during the charge redistribution is $\frac{X}{100}$ J then value of X to the nearest integer is _____. एक 5μF धारिता वाले संधारित्र को 220V के स्त्रोत से पूर्ण रूप से आवेशित करा जाता है। तत्पश्चात् इसे स्त्रोत से हटाकर एक 2.5 μ F अनावेशित धारित वाले संधारित्र से श्रेणी संबंधन में जोड़ दिया जाता है। यदि आवेश के दोनों संधारित्रों में पुनःवितरित होने पर $\frac{X}{100}$ J ऊर्जा में परिवर्तन हुआ हो तो X का मान निकटतम पूर्णाक में _____ है।

CRASH COURSE **FOR JEE ADVANCED 2020**

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Sol. (4) Our Answer **NTA Answer 36**

$$heat = U_i - U_f$$

$$=\frac{1}{2}\frac{C_{1}C_{2}}{C_{1}+C_{2}}\big(V_{1}-V_{2}\big)^{2}$$

$$=\frac{1}{2}\frac{5\times2.5}{7.5}\big(220-0\big)^2$$

$$=\,\frac{5}{6}\times220\times220\times10^{-6}\,J$$

$$=40,333.33 \times 10^{-6} J$$

$$= 40.3 \times 10^{-3} = \frac{X}{100}$$

$$\Rightarrow$$
 x = 4.03

Admission **OPEN**

जब इन्होने पूरा किया अपना सपना तो आप भी पा सकते है लक्ष्य अपना

JEE MAIN RESULT 2019

KOTA'S PIONEER IN DIGITAL EDUCATION 1,95,00,000+ viewers | 72,67,900+ viewing hours | 2,11,000+ Subscribers

SERVICES	SILVER	GOLD	PLATINUM
Classroom Lectures (VOD)			
Live interaction	NA		
Doubt Support	NA		
Academic & Technical Support	NA		
Complete access to all content	NA		
Classroom Study Material	NA		
Exercise Sheets	NA		
Recorded Video Solutions	NA		
Online Test Series	NA		
Revision Material	NA		
Upgrade to Regular Classroom program	Chargeable	Chargeable	Free
Physical Classroom	NA	NA	
Computer Based Test	NA	NA	
Student Performance Report	NA	NA	
Workshop & Camp	NA	NA	
Motion Solution Lab- Supervised learning and instant doubt clearance	NA	NA	
Personalised guidance and mentoring	NA	NA	

FEE STRUCTURE				
CLASS	SILVER	GOLD	PLATINUM	
7th/8th	FREE	₹ 12,000	₹ 35,000	
9th/10th	FREE	₹ 15,000	₹ 40,000	
11th	FREE	₹ 29,999	₹ 49,999	
12th	FREE	₹ 39,999	₹ 54,999	
12th Pass	FREE	₹ 39,999	₹ 59,999	

- + Student Kit will be provided at extra cost to Platinum Student.
- SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures.
- GOLD (Online) can be converted to regular classroom (Any MOTION Center) by paying difference amount after lockdown.
- PLATINUM (Online + Regular) can be converted to regular classroom (Any MOTION Center) without any cost after lockdown.

New Batch Starting from:

16 & 23 September 2020

Zero Cost EMI Available

