

JEE I NEET I Foundation

SECTION - A

1. dilNaOH $\xrightarrow{H^+, Heat}$ "Y"

Consider the above reaction, the product 'X' and 'Y' respectively are:

(2) Ans. Sol.

- 2. The charges on the colloidal CdS sol and TiO₂ sol are, respectively:
 - (1) positive and negative

(2) negative and negative

(3) negative and positive

(4) positive and positive

Ans.

Sol.

 $CdS \rightarrow Sulphide sol. \rightarrow Negative sol.$

 $TiO_2 \rightarrow Oxide sol. \rightarrow Positive sol.$

Toll Free: 1800-212-1799

Motion[®]

3. Ans.	The oxide that shows mag (1) SiO ₂ (2 (3)	netic propert) Na₂O	y is : (3) Mn ₃ O ₄	(4) MgO		
Sol.	Mn_3O_4 is paramagnetic due to presence of unpaired electrons.					
4.	Given below are two statements: Statement I: Bohr's theory accounts for the stability and line spectrum of Li ⁺ ion. Statement II: Bohr's theory was unable to explain the splitting of spectral lines in the presence of a magnetic field. In the light of the above statements, choose the most appropriate answer from the options given below: (1) Both statement I and statement II are true. (2) Statement I is true but statement II is false. (3) Statement I is false but statement II are false. (4) Both statement I and statement II are false. (3)					
Sol.	$S-1 \rightarrow false$ $S-2 \rightarrow True$ Hence option 3					
Ans. Sol.	(2) Copper (ii (3) Silicon (ii (4) Nickel (iv Choose the most appropri (1) (a)-(ii), (b)-(iii), (c)-(i), (d)	List-I Mercury (i) Vapour phase refining Copper (ii) Distillation Refining Silicon (iii) Electrolytic Refining Nickel (iv) Zone Refining coose the most appropriate answer from the option given below: (a)-(ii), (b)-(iii), (c)-(i), (d)-(iv) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(iii) (4) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(ii)				
	•					
6.	List-I (Class of Chemicals) (a) Antifertility drug (b) Antibiotic (c) Tranquilizer (d) Artificial Sweetener Options: (1) (a)-(iv), (b)-(iii), (c)-(ii), (3) (a)-(ii), (b)-(iv), (c)-(i), (d)	(ii) Alita (iii) Nor (iv) Salv	robamate nme rethindrone			
Ans. Sol.	(4) (a) Antifertility drug (b) Antibiotic	\longrightarrow \longrightarrow	Norethindrone Salvarsan	,, , , , , , , , , , , , , , , , , , ,		

Toll Free: 1800-212-1799

(d) Artificial sweetener → Alitame

(c) Tranquilizer

www.motion.ac.in | Email: info@motion.ac.in

---> Meprobamate

7. Main Products formed during a reaction of 1-methoxy naphthalene with hydroiodic acid are:

Ans. (4) Sol.

8.

Consider the given reaction, percentage yield of :

(2)
$$B > C > A$$

(4)
$$C > A > B$$

Ans. (3) Sol.

Order of % yield
$$\Rightarrow$$
 NH_2 NH_2 NH_2 NO_2 NO_2

Toll Free: 1800-212-1799

Motion[®]

- An organic compound "A" on treatment with benzene sulphonyl chloride gives compound B. B is soluble in 9. dil. NaOH solution. Compound A is:
 - $(1) C_6H_5-N-(CH_3)_2$ $(3) C_6 H_5 - CH - NH_2$

(2) C_6H_5 -NHCH₂CH₃

CH₃

(4) C₆H₅-CH₂ NH CH₃

Ans. (3) Sol.

$$\begin{array}{c|c} C_6H_5-CH-NH_2 & C_6H_5SO_2CI \\ CH_3 & -HCI & | \\ CH_3 & (ppt)(Acidic in \\ C_6H_5-CH-NSO_2C_6H_5 & NaOH \\ Na^+ & CH_3 & \\ &$$

- 10. The first ionization energy of magnesium is smaller as compound to that of elements X and Y, but higher than that of Z. The elements X, Y and Z, respectively are:
 - (1) argon, lithium and sodium
 - (2) chlorine, lithium and sodium
 - (3) neon, sodium and chlorine
 - (4) argon, chlorine and sodium

Ans. (4)

Sol. Order of I.E.

 $3rd period \rightarrow Na < Al < Mg < Si < S < P < Cl < Ar$

In the following molecule, 11.

$$H_3\overset{a}{C}$$
 $C = \overset{b}{C} - O \overset{c}{C}$

Hybridisation of Carbon a, b and c respectively are :

(1) sp^3 , sp^2 , sp^2 (2) sp^3 , sp^2 , sp

(3) sp^3 , sp, sp (4) sp^3 , sp, sp^2

Ans. (1)

Sol.

 $\begin{array}{c} a \longrightarrow sp^3 \\ b \longrightarrow sp^2 \end{array}$

 $c \longrightarrow sp^2$

Toll Free: 1800-212-1799

- **12.** In the reaction of hypobromite with amide, the carbonyl carbon is lost as:
 - (1) HCO₃
- $(2) CO_3^{2-}$
- (3) CO₂
- (4) CO

Ans. (2) Sol. CO₃²⁻

- **13.** The oxidation states of nitrogen in NO, NO₂, N₂O and NO₃ are in the order of :
 - (1) $NO_2 > NO_3^- > NO > N_2O$

(2) $N_2O > NO_2 > NO > NO_3^-$

(3) $NO_3^- > NO_2 > NO > N_2O$

(4) $NO > NO_2 > N_2O > NO_3^-$

Ans. (3)

- **Sol.** O.S. of 'N'
 - $NO \rightarrow +2$
 - $NO_2 \rightarrow +4\,$
 - $N_2O \rightarrow +1$
 - $NO_3^- \rightarrow +5$

Decreasing order of ox. state of 'N' is as follows

 $NO_3^- > NO_2 > NO > N_2O$

14. Match List-I and List-II:

List-I	List-II
LISt-I	LIST-II

- (a) Be(i) treatment of cancer(b) Mg(ii) extraction of metals
- (c) Ca (iii) incendiary bombs and signals (d) Ra (iv) windows of X-ray tubes
 - (v) bearings for motor engines

Choose the most appropriate answer from the option given below:

Options:

- (1) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(v)
- (2) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
- (3) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
- (4) (a)-(iii), (b)-(iv), (c)-(v), (d)-(ii)

Ans. (3)

Sol. Fact (NCERT)

Due to radioactive nature Ra - is used in treatment of cancer.

- **15.** Deficiency of vitamin K causes:
 - (1) Cheilosis
 - (2) Increase in blood clotting time
 - (3) Increase in fragility of RBC's
 - (4) Decrease in blood clotting time

Ans. (2)

Sol. Deficiency of vitamin "K" causes ↑ in blood clotting time.

Toll Free: 1800-212-1799

Motion[®]

16. Given below are two statements :

Statement I: C₂H₅OH and AgCN both can general nucleophile.

Statement II: KCN and AgCN both will generate nitrile nucleophile with all reaction condition.

Choose the most appropriate option:

- (1) Statement I is false but statement II is true.
- (2) Statement I is true but statement II is false.
- (3) Both statement I and statement II are false.
- (4) Both statement I and statement II are true.

Ans. (2)

Sol. \Rightarrow C₂H₅OH 8

- \Rightarrow C₂H₅OH & AgCN both can generate nucleophile
- ⇒ AgCN & KCN both not generate nitrite nucleophile in all reaction condition.
- **17.** Given below are two statements :

Statement I: Non-biodegradable wastes are generated by the thermal power plants.

Statement II: Bio-degradable detergents leads to eutrophication.

In the light of the above statements, choose the most appropriate answer from the options given below. Options :

- (1) Statement I is false but statement II is true.
- (2) Both statement I and statement II are true.
- (3) Both statement I and statement II are false
- (4) Statement I is true but statement II is false.

Ans. (2)

Sol. Fact (NCERT-Based)

18. A hard substance melts at high temperature and is an insulator in both solid and in molten state. This solid is most likely to be a/an:

(1) Metallic solid

(2) Covalent solid

(3) Ionic solid

(4) Molecular solid

Ans. (2)

- **Sol.** If substance is insulator in solid & molten both phase, then it can't be ionic or metallic solid. If melting pt. is higher, then it can't be molecular solid.
 - : It should be covalent network solid.
- **19.** The secondary valency and the number of hydrogen bounded water molecule(s) in CuSO₄.5H₂O, respectively, are :

(1) 6 and 4

(2) 4 and 1

(3) 5 and 1

(4) 6 and 5

Ans. (2) Sol.

$$\begin{pmatrix} H & O & H \\ H & O & O \\ H & O & H \\ H & O & O \\ CN = 4 \end{pmatrix} \rightarrow \begin{pmatrix} H & -1 & \bar{O} \\ H & -1 & \bar{O} \end{pmatrix} \times \begin{pmatrix} O & H \\ H & O & \bar{O} \\ H & -1 & \bar{O} \end{pmatrix} \times \begin{pmatrix} O & H \\ H & O & \bar{O} \\ H & -1 & \bar{O} \end{pmatrix} \times \begin{pmatrix} O & H \\ H & \bar{O} \\ H & -1 & \bar{O} \end{pmatrix} \times \begin{pmatrix} O & H \\ H & \bar{O} \\ \bar{O} \\ \bar{O} \end{pmatrix} \times \begin{pmatrix} O & H \\ H & \bar{O} \\ \bar{O} \\ \bar{O} \end{pmatrix} \times \begin{pmatrix} O & H \\ H & \bar{O} \\ \bar{O} \\ \bar{O} \end{pmatrix} \times \begin{pmatrix} O & H \\ H & \bar{O} \\ \bar{O} \\ \bar{O} \\ \bar{O} \end{pmatrix} \times \begin{pmatrix} O & H \\ H & \bar{O} \\ \bar{O} \\ \bar{O} \\ \bar{O} \end{pmatrix} \times \begin{pmatrix} O & H \\ \bar{O} \\ \bar{O} \\ \bar{O} \\ \bar{O} \end{pmatrix} \times \begin{pmatrix} O & H \\ \bar{O} \\ \bar{O} \\ \bar{O} \\ \bar{O} \\ \bar{O} \end{pmatrix} \times \begin{pmatrix} O & H \\ \bar{O} \\ \bar{O} \\ \bar{O} \\ \bar{O} \\ \bar{O} \end{pmatrix} \times \begin{pmatrix} O & H \\ \bar{O} \\ \bar{O} \\ \bar{O} \\ \bar{O} \\ \bar{O} \\ \bar{O} \end{pmatrix} \times \begin{pmatrix} O & H \\ \bar{O} \\ \bar{O}$$

Toll Free: 1800-212-1799

MOTION[™] JEE MAIN 2021

- 20. In basic medium, H₂O₂ exhibits which of the following reactions?
 - (A) $Mn^{2+} \rightarrow Mn^{4+}$
 - (B) $I_2 \rightarrow I^-$
 - (C) PbS \rightarrow PbSO₄

Choose the most appropriate answer from the options given below:

- (1) (A), (C) only (2) (A) only
- (3) (B) only
- (4) (A), (B) only

Ans.

Sol. (1) Oxidising action in basic medium

$$2Fe^{2+} + H_2O_2 \longrightarrow 2Fe^{3+} + 2OH^{-}$$

$$Mn^{2+} + H_2O_2 \longrightarrow Mn^{4+} + 2OH^-$$

(2) Reducing action in basic medium

$$I_2 + H_2O_2 + 2OH^- \longrightarrow 2I^- + 2H_2O + O_2$$

$$2MnO_4^- + 3H_2O_2 \longrightarrow 2MnO_2 + 3O_2 + 2H_2O + 2OH^-$$

SECTION - B

The solubility of CdSO₄ in water is 8.0×10^{-4} mol L⁻¹. Its solubility in 0.01 M H₂SO₄ solution is _____ × 10^{-6} 1. mol L⁻¹. (Round off to the Nearest Integer).

Assume that solubility is much less than 0.01 M)

- Ans.
- $CdSO_4(s) \rightleftharpoons Cd^{+2}(aq) + SO_4^{2-}(aq)$ Sol.

$$S$$
 S
 $S = 8 \times 10^{-4}$ $K_{sp} = S^2 = 64 \times 10^{-8}$
 $CdSO_4(s) \Longrightarrow Cd^{+2} + SO_4^{-2}$

$$CdSO_4(s) \rightleftharpoons Cd^{+2} + SO_4^{-2}$$

$$S = S + 10^{-2}$$

$$K_{sp}(CdSO_4) = 64 \times 10^{-8} = s(s + 10^{-2})$$

 $64 \times 10^{-8} \simeq s \times 10^{-2} = 64 \times 10^{-6}$

- The molar conductivities at infinite dilution of barium chloride, sulphuric acid and hydrochloric acid are 280, 2. 860 and 426 S cm² mol⁻¹ respectively. The molar conductivity at infinite dilution of barium sulphate is _____ S cm² mol⁻¹. (Round off to the Nearest Integer).
- 288 Ans.
- Sol. $\lambda_{M}^{\infty}(BaCl_{2}) = 280$

$$\lambda_{M}^{\infty}(H_{2}SO_{4})=860$$

$$\lambda_{M}^{\infty}(HCI) = 426$$

$$\lambda_{M}^{\infty}(BaSO_{4}) = ??$$

=
$$\lambda_{M}^{\infty}(H_{2}SO_{4}) + \lambda_{M}^{\infty}(BaCl_{2}) - 2 \times \lambda_{M}^{\infty}(HCl)$$

- $= 860 + 280 2 \times 426$
- = 288

Toll Free: 1800-212-1799

MOTION

A reaction has a half life of 1 min. The time required for 99.9% completion of the reaction is _____ min. 3. (Round off to the nearest integer)

[Use : $\ln 2 = 0.69$; $\ln 10 = 23$]

10 Ans.

Sol.
$$t_{99.9\%} = \ref{thm:property}$$

$$\simeq 10 \times t_{1/2}$$

$$\simeq 10 \, \text{min}$$

Derivation

$$t_{99.9\%} = \frac{1}{K} \ell n \left\{ \frac{100}{0.1} \right\} = \frac{1}{K} \ell n (1000)$$

$$= \frac{3}{K} \ell n (10) = 3 \frac{(t_{1/2})}{\ell n (2)} \times \ell n (10)$$

$$= 3 \times (1 \min) \times \frac{\ell n (10)}{\ell n (2)}$$

$$= \frac{3}{\log(2)} = \frac{3}{0.3} \simeq 10 \min$$

4. The gas phase reaction

at 400 K has $\Delta G^{\circ} = + 25.2 \text{ kJ mol}^{-1}$

The equilibrium K_C for this reaction is _____ × 10^{-2} . (Round off to the Nearest Integer).

[Use : $R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1}$, $\ln 10 = 2.3$

 $log_{10} 2 = 0.30, 1 atm = 1 bar$

[antilog (-0.3) = 0.501]

Ans.

Sol. Using formula

$$\Delta G^{\circ} = -RTInK_{P}$$

25200 = -2.3 × 8.3 × 400 log (
$$K_P$$
)
 $K_P = 10^{-3.3} = 10^{-3} \times 0.501$
= 5.01 × 10⁻⁴ Bar⁻¹

$$K_P = 10^{-3.3} = 10^{-3} \times 0.50$$

$$= 5.01 \times 10^{-4} \, \text{Bar}^{-1}$$

$$= 5.01 \times 10^{-5} \, \text{Pa}^{-1}$$

$$= \frac{K_{C}}{8.3 \times 400}$$

$$K_C = 1.66 \times 10^{-5} \text{m}^3/\text{mole}$$

$$= 1.66 \times 10^{-2} \text{ L/mol}$$

Ans. 2

Toll Free: 1800-212-1799

5.

COOH
$$+Br_2 \xrightarrow{FeBr_3} +HBI$$

Consider the above reaction where 6.1 g of benzoic acid is used to get 7.8 g of m-bromo benzoic acid. The percentage yield of the product is _

(Round off to the Nearest integer)

[Given: Atomic masses: C: 12.0 u, H: 1.0 u, O: 16.0 u, Br: 80.0 u]

Ans.

Sol. PhCOOH + Br₂
$$\xrightarrow{\text{FeBr}_3}$$
 + HBr
$$6.1 \qquad 7.8$$

$$\frac{moles\,of\,PhCOOH}{1} = \frac{Moles\,of\,C_6H_4COOHBr}{1}$$

Moles of
$$C_6H_4COOHBr = \frac{6.1}{122} = \frac{1}{20} mol$$

mass of
$$C_6H_4COOHBr = 201 \times \frac{1}{20}gm$$

% yield =
$$\frac{7.8}{201/20} \times 100$$

= 77.612%

≃ 78 Nearest Integer

A solute A dimerizes in water. The boiling point of a 2 molal solution of A is 100.52°C. The percentage 6. association of A is _____. (Round off to the Nearest integer.)

[Use: K_b for water = 0.52 K kg mol⁻¹ Boiling point of water = 100°C]

Ans.

Sol.
$$2A \longrightarrow A_2$$
 $N = \frac{1}{2}$

$$m = 2$$
; $T_b soln. = 100.52$

$$\Delta T_b = 0.52$$

$$= i \times K_b \times m$$

$$= i \times K_b \times m$$

$$0.52 = i \times 0.52 \times 2$$

$$i = \frac{1}{2} = 1 + 1 + (\frac{1}{2} - 1)\alpha$$

$$\frac{\alpha}{2} = \frac{1}{2}$$

Toll Free: 1800-212-1799

Motion[®]

 $\alpha = 1$

7. The number of species below that have two lone pairs of electrons in their central atom is ______. (Round off to the Nearest Integer.)

SF₄, BF₄⁻, CIF₃, AsF₃, PCl₅, BrF₅, XeF₄, SF₆

Ans. (2)

Sol. CIF₃ and XeF₄ have two lp-in their central atom

8. 10.0 mL of Na₂CO₃ solution is titrated against 0.2 M HCl solution. The following litre values were obtained in 5 readings.

4.8 mL, 4.9 mL, 5.0 mL, 5.0 mL and 5.0 mL

Based on these readings, and convention of titrimetric estimation the concentration of Na₂CO₃ solution is mM.

(Round off to the Nearest Integer)

Ans. 50

Sol. Na₂CO₃ + HCl \longrightarrow 10ml 0.2M M = ?? 5ml M_{eq.} of Na₂CO₃ = M_{eq.} of HCl M × 10 × 2 = 0.2 × 5 × 1 M = 5 × 10⁻²M = 50 × 10⁻³M = 50 mM

9. In Tollen's test for aldehyde, the overall number of electron(s) transferred to the Tollen's reagent formula $[Ag(NH_3)_2]^+$ per aldehyde group to form silver mirror is ______(Round off to the Nearest Integer)

Ans. (2)

Ans 50

Sol. $R - CHO \xrightarrow{2[Ag(NH_3)_2]^+OH^\circ} RCOOH + 2Ag + 2NH_3 + H_2O$ $2Ag^+ \xrightarrow{2e^-} 2Ag$

10. A xenon compound 'A' upon partial hydrolysis gives XeO₂F₂. The number of lone pair of electrons presents in compound A is ______. (Round off to the Nearest Integer).

Ans. (19)

 $\textbf{Sol.} \quad \text{Partial Hydro} \begin{cases} XeF_6 + H_2O \longrightarrow XeOF_4 + 2HF \\ XeF_6 + 2H_2O \longrightarrow XeO_2F_2 + 4HF \end{cases}$

Motion

Another opportunity to strengthen your preparation

UNNATI CRASH COURSE JEE Main May 2021

at Kota Classroom

- 40 Classes of each subjects
- Doubt Clearing sessions by Expert faculties
- Full Syllabus Tests to improve your question solving skills
- Thorough learning of concepts with regular classes
- Get tips & trick along with sample papers

Course Fee : ₹ 20,000

Start your **JEE Advanced 2021**Preparation with

UTTHAN CRASH COURSE

at Kota Classroom

- Complete course coverage
- ◆ 55 Classes of each subject
- 17 Full & 6 Part syllabus tests will strengthen your exam endurance
- Doubt clearing sessions under the guidance of expert faculties
- Get tips & trick along with sample papers

Course Fee : ₹ 20,000

