JEE MAIN 4th Attempt

MATHEMATICS 26thAugust 2021 [SHIFT – 2] QUESTION WITH SOLUTION

JEE | NEET | Foundation

हो चुकी है ऑफलाइन क्लासरूम की शुरूआत अपने सपने को करो साकार, कोटा कोचिंग के साथ

Directors of Nucleus Education & Wizard of Mathematics

Now Offline associated with Motion Kota Classroom

Nitin Vijay (NV Sir) Managing Director Exp. : 18 yrs

Vishal Joshi (VJ Sir) Exp. : 18 yrs Surendra K. Mishra (SKM Sir) Exp. : 16 yrs

Gavesh Bhardwaj (GB Sir) Exp. : 17 yrs

Academic Pillars of JEE MOTION KOTA

Ram Ratan Dwivedi (RRD Sir) Joint Director Exp. : 20 yrs

Anurag Garg (AG Sir) Sr. Faculty Exp. : 17 yrs

Amit Verma (AV Sir) Joint Director Exp. : 16 yrs

Arjun Gupta

(Árjun Sir) Sr. Faculty

Exp. : 14 yrs

(VPS Sir)

Vice President

Devki Nandan Pathak Avinash Kishore (DN Sir) Sr. Faculty Exp. : 13 yrs

(NS Sir) Head JEE Academics Exp. : 17 yrs

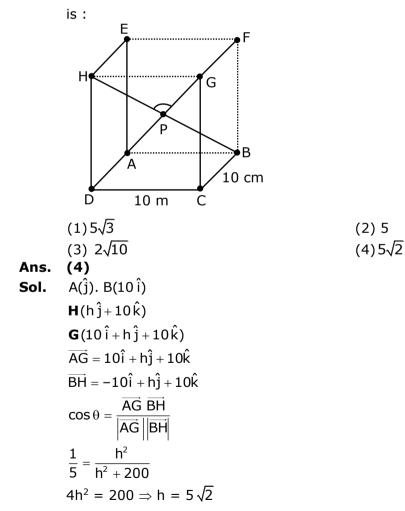
(AVN Sir) Sr. Faculty Exp.: 9 yrs

Aatish Agarwal (AA Sir) Sr. Faculty Exp. : 17 yrs

Vipin Sharma (VS Sir) Sr. Faculty Exp. : 12 yrs

Jayant Chittora (JC Sir) Sr. Faculty Exp. : 16 yrs

Durgesh Pandey (Pandey Sir) Sr. Faculty Exp.: 8 yrs


Join **English & Hindi Medium** EE DROPPER BATC **Online + Offline Mode**

ANSWER KEY

SECTION - A

- **1.** Let P be the plane passing through the point (1, 2, 3) and the line of intersection of the planes $\vec{r}.(\hat{i}+\hat{j}+4\hat{k}) = 16$ and $\vec{r}.(-\hat{i}+\hat{j}+\hat{k}) = 6$. Then which of the following points does NOT lie on P ?
- (1)(3, 3, 2) (3)(4, 2, 2) (4)(6, -6, 2) (5)(2)(-8, 8, 6) (4)(6, -6, 2) (4)(
- **2.** A hall has a square floor of dimension $10m \times 10m$ (see the figure) and vertical walls. If the angle GPH between the diagonals AG and BH is $\cos^{-1}\frac{1}{5}$, then the height of the hall (in meters)

An Unmatched Experience of Offline

ANSWER KEY

3. Consider the two statements: $(S1): (p \rightarrow q) \lor (\sim q \rightarrow p)$ is a tautology (S2): $(p \land \sim q) \land (\sim p \lor q)$ is a fallacy. Then: (1) only (S1) is true. (2) only (S2) is true. (4) both (S1) and (S2) are false (3) both (S1) and (S2) are true. Ans. (3) S_1 : (~ p \lor q) \lor (q \lor p) = (q \lor ~ p) \lor (q \lor p) Sol. $S_1 = q \lor (\sim p \lor p) = q \lor t = t = tautology$ S_2 : $(p_{\wedge} \sim q) \land (\sim p \lor q) = (p \land \sim q) \land \sim (p_{\wedge} \sim q) = C$ = fallacy $(1 \ 0 \ 0)$ Let $A = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$. Then $A^{2025} - A^{2020}$ is equal to : 4. 1 0 0 $(1) A^5$ (2) A⁶ $(4) A^5 - A$ $(3) A^6 - A$ Ans. (3) $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \Rightarrow A^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ Sol. $A^{3} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \Rightarrow A^{4} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ $A^n = \begin{bmatrix} 1 & 0 & 0 \\ n-1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ $A^{2025} - A^{2020} = \begin{bmatrix} 0 & 0 & 0 \\ 5 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\mathbf{A}^{6} - \mathbf{A} = \begin{bmatrix} 0 & 0 & 0 \\ 5 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ The domain of the function $\operatorname{cosec}^{-1}\left(\frac{1+x}{x}\right)$ is : 5. (1) $\left[-\frac{1}{2},\infty\right]-\{0\}$ (2) $\left(-\frac{1}{2},\infty\right)-\{0\}$ $(4)\left(-1,-\frac{1}{2}\right]\cup(0,\infty)$ $(3)\left[-\frac{1}{2},0\right]\cup [1,\infty)$ (1) Ans. $\frac{1+x}{x} \in (-\infty, -1] \cup [1, \infty)$ Sol. An Unmatched Experience of Offline KOTA CLASSROOM For JEE New batch Starting from : 22nd Sept. 2021

ANSWER KEY

$$\frac{1}{x} \in (-\infty, -2] \cup [0, \infty)$$
$$x \in \left[-\frac{1}{2}, 0\right] \cup (0, \infty)$$
$$x \in \left[-\frac{1}{2}, 0\right] - \{0\}$$

- 6. The value of $2\sin\left(\frac{\pi}{8}\right)\sin\left(\frac{2\pi}{8}\right)\sin\left(\frac{3\pi}{8}\right)\sin\left(\frac{5\pi}{8}\right)\sin\left(\frac{6\pi}{8}\right)\sin\left(\frac{7\pi}{8}\right)$ is : (1) $\frac{1}{8}$ (2) $\frac{1}{8\sqrt{2}}$ (3) $\frac{1}{4\sqrt{2}}$ (4) $\frac{1}{4}$
- Ans. (1)

Sol. $2\sin\left(\frac{\pi}{8}\right)\sin\left(\frac{2\pi}{8}\right)\sin\left(\frac{3\pi}{8}\right)\sin\left(\frac{5\pi}{8}\right)\sin\left(\frac{6\pi}{8}\right)\sin\left(\frac{7\pi}{8}\right)$ $2\sin^{2}\frac{\pi}{8}\sin^{2}\frac{2\pi}{8}\sin^{2}\frac{3\pi}{8}$ $\sin^{2}\frac{\pi}{8}\sin^{2}\frac{3\pi}{8}$ $\sin^{2}\frac{\pi}{8}\cos^{2}\frac{\pi}{8}$ $\frac{1}{4}\sin^{2}\left(\frac{\pi}{4}\right) = \frac{1}{8}$

7. If $(\sqrt{3} + i)^{100} = 2^{99}$ (p + iq), then p and q are roots of the equation : (1) $x^2 + (\sqrt{3} + 1)x + \sqrt{3} = 0$ (2) $x^2 + (\sqrt{3} - 1)x - \sqrt{3} = 0$ (3) $x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0$ (4) $x^2 - (\sqrt{3} - 1)x - \sqrt{3} = 0$ Ans. (4) Sol. $(2e^{i\pi/6})^{100} = 2^{99}$ (p + iq) $2^{100} \left(\cos \frac{50\pi}{3} + i \sin \frac{50\pi}{3} \right) = 2^{99}$ (p + iq) p + iq = 2 $\left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)$

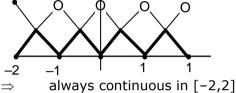
$$p = -1, q = \sqrt{3}$$

 $x^{2} - (\sqrt{3} - 1) x - \sqrt{3} = 0$

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE New batch Starting from : 22nd Sept. 2021

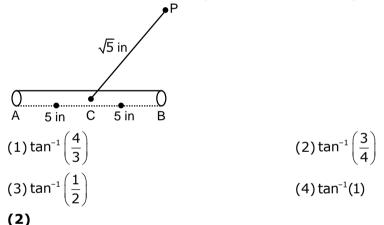
ANSWER KEY

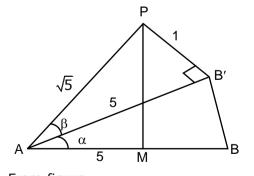

- 8. If $\sum_{r=1}^{50} \tan^{-1} \frac{1}{2r^2} = p$, then the value of tan p is: (1) $\frac{51}{50}$ (2) $\frac{101}{102}$ (3) 100 (4) $\frac{50}{51}$
- Ans. (4) Sol. $\sum_{r=1}^{50} \tan^{-1}\left(\frac{2}{4r^2}\right) = \sum_{r=1}^{50} \tan^{-1}\left(\frac{(2r+1) - (2r-1)}{1 + (2r+1)(2r-1)}\right)$ $\sum_{r=1}^{50} \tan^{-1}(2r+1) - \tan^{-1}(2r-1)$ $\tan^{-1}(101) - \tan^{-1}1 \Rightarrow \tan^{-1}\frac{50}{51}$
- **9.** If the value of the integral $\int_{0}^{5} \frac{x + [x]}{e^{x [x]}} dx = \alpha e^{-1} + \beta$, where $\alpha, \beta \in \mathbb{R}, 5\alpha + 6\beta = 0$, and [x] denotes the greatest integer less than or equal to x, then the value of $(\alpha + \beta)^2$ is equal to : (1) 36 (2) 100
 - (3) 16 (4) 25
- Ans. (4)

An Unmatched Experience of Offline **KOTA CLASSROOM** For JEE New batch Starting from : **22nd Sept. 2021**

ANSWER KEY

- **10.** Let [t] denote the greatest integer less than or equal to t.
 - Let f(x) = x [x], g(x) = 1 x + [x], and $h(x) = \min \{f(x), g(x)\}$, $x \in [-2, 2]$. Then h is : (1) not continuous at exactly four points in [-2, 2]
 - (2) not continuous at exactly three points in [-2, 2]
 - (3) continuous in [-2,2] but not differentiable at exactly three points in (-2, 2)
 - (4) continuous in [-2, 2] but not differentiable at more than four points in (-2, 2)
- Ans. (4)
- **Sol.** min{x [x], 1 x + [x]}


$$h(x) = \min \{x - [x], 1 - (x - [x])\}$$


but non differentiable at 7 points

11. A 10 inches long pencil AB with mid point C and a small eraser P are placed on the horizontal top of a table such that PC = $\sqrt{5}$ inches and \angle PCB = tan⁻¹(2).

The acute angle through which the pencil must be rotated about C so that the perpendicular distance between eraser and pencil becomes exactly 1 inch is :

Ans. Sol.

From figure sin $\beta = \frac{1}{\sqrt{5}}$

An Unmatched Experience of Offline

MOTION[®] JEE MAIN 2021

ANSWER KEY

 \therefore tan $\beta = \frac{1}{2}$ $\tan(\alpha + \beta) = 2$ $\frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \cdot \tan\beta} = 2$ $\frac{\tan\alpha + \frac{1}{2}}{1 - \tan\alpha\left(\frac{1}{2}\right)} = 2$ $\tan \alpha = \frac{3}{4}$ $\alpha = \tan^{-1}\left(\frac{3}{4}\right)$

A circle C touches the line x = 2y at the point (2, 1) and intersects the circle C₁ : $x^2 + y^2 + 2y - 2y$ 12. 5 = 0 at two points P and Q such that PQ is a diameter of C₁. Then the diameter of C is : $(1)\sqrt{285}$ $(2) 4\sqrt{15}$

(4)7√5

(3) 15 (4) Ans. $\begin{aligned} (x - 2)^2 + (y - 1)^2 + \lambda(x - 2y) &= 0\\ C : x^2 + y^2 + x(\lambda - 4) + y(-2-2\lambda) + 5 &= 0 \end{aligned}$ Sol. $C_1: x^2 + y^2 + 2y - 5 = 0$ $S_1 - S_2 = 0$ (Equation of PQ) $(\lambda - 4)x - (2\lambda + 4)y + 10 = 0$ Passes through (0, -1) $\Rightarrow \qquad \lambda = -7$ $C: x^2 + y^2 - 11x + 12y + 5 = 0$ = <u>√</u>245

4 Diameter = $7\sqrt{5}$

13. A fair die is tossed until six is obtained on it. Let X be the number of required tosses, then the conditional probability $P(x \ge 5 | x > 2)$ is :

$(1)\frac{25}{36}$	$(2)\frac{11}{36}$
$(3)\frac{125}{216}$	$(4)\frac{5}{6}$

Ans. (1)

 $P(x \ge 5 | x > 2) = \frac{P(x \ge 5)}{P(x > 2)}$ Sol.

$$\left(\frac{5}{6}\right)^4 \cdot \frac{1}{6} + \left(\frac{5}{6}\right)^5 \cdot \frac{1}{6} + \dots + \infty$$
$$\left(\frac{5}{6}\right)^2 \cdot \frac{1}{6} + \left(\frac{5}{6}\right)^3 \cdot \frac{1}{6} + \dots + \infty$$

An Unmatched Experience of Offline

New batch Starting from : 22nd Sept. 2021

KOTA CLASSROOM For JEE

ANSWER KEY

$$\frac{\left(\frac{5}{6}\right)^4 \cdot \frac{1}{6}}{\frac{1 - \frac{5}{6}}{\left(\frac{5}{6}\right)^2 \cdot \frac{1}{6}}} = \left(\frac{5}{6}\right)^2 = \frac{25}{36}$$
$$\frac{\left(\frac{5}{6}\right)^2 \cdot \frac{1}{6}}{1 - \frac{5}{6}}$$

Two fair dice are thrown. The numbers on them are taken as λ and $\mu,$ and a system of linear 14. equations

$$x + y + z = 5$$

 $x + 2y + 3 z = \mu$
 $x + 3y + \lambda z = 1$

is constructed. If p is the probability that the system has a unique solution and q is the probability that the system has no solution, then :

	(1) $p = \frac{5}{6}$ and $q = \frac{5}{36}$	(2) $p = \frac{1}{6}$ and $q = \frac{1}{36}$
	(3) $p = \frac{1}{6}$ and $q = \frac{5}{36}$	(4) $p = \frac{5}{6}$ and $q = \frac{1}{36}$
Ans.	(1)	
Sol.	$D \neq 0 \Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & \lambda \end{vmatrix} \neq 0 \Rightarrow \lambda \neq 5$	
5011		
	For no solution D = 0 $\Rightarrow \lambda = 5$	
	1 1 5	
	$D_1 = \begin{vmatrix} 1 & 2 & \mu \end{vmatrix} \neq 0 \Rightarrow \mu \neq 3$	
	$D_{1} = \begin{vmatrix} 1 & 1 & 5 \\ 1 & 2 & \mu \\ 1 & 3 & 1 \end{vmatrix} \neq 0 \Longrightarrow \mu \neq 3$	
	- · · ·	
	$p = \frac{5}{c}$	
	0	
	$q = \frac{1}{6} \times \frac{5}{6} = \frac{5}{26}$	
	6 6 36	
15.	The local maximum value of the function	
	2	
	$f(x) = \left(\frac{2}{x}\right)^{x^2}, x > 0$ is :	
	(\mathbf{x})	
	2	$(4)^{\frac{e}{4}}$
	$(1)(e)^{\frac{2}{e}}$	$(2)\left(\frac{4}{\sqrt{6}}\right)^{\frac{3}{4}}$
	1	(ve)
	$(3)\left(2\sqrt{e}\right)^{\frac{1}{e}}$	(4) 1
		() -
Ans.	(1)	

Ans. (1)

An Unmatched Experience of Offline

ANSWER KEY

Sol.
$$f(x) = \left(\frac{2}{x}\right)^{x^{2}}; x > 0$$

$$\ell nf(x) = x^{2} (\ell n2 - \ell nx)$$

$$f'(x) = f(x) \{-x + (\ell n2 - \ell nx)2x\}$$

$$f'(x) = f(x) \cdot x (2\ell n2 - 2\ell nx - 1)$$

$$= \ell n \frac{4}{x^{2}} - 1 = 0 \Rightarrow x = \frac{2}{\sqrt{e}}$$

$$\ell n \frac{4}{x^{2}} - 1 = 0 \Rightarrow x = \frac{2}{\sqrt{e}}$$

$$LM = \frac{2}{\sqrt{e}}$$

$$Local maximum value = \left(\frac{2}{2/\sqrt{e}}\right)^{\frac{4}{e}} \Rightarrow e^{\frac{2}{e}}$$

- Let y(x) be the solution of the differential equation $2x^2dy + (e^y 2x)dx = 0$, x > 0. If y(e) = 1. 16. Then y(1) is equal to: (2) 2 (4) log_e2 (1) 0(3) log_e(2e) Ans. (4)
- Sol.

$$2x^{2}dy + (e^{y} - 2x)dx = 0$$

$$\frac{dy}{dx} + \frac{e^{y} - 2x}{2x^{2}} = 0 \Rightarrow \frac{dy}{dx} + \frac{e^{y}}{2x^{2}} - \frac{1}{x} = 0$$

$$e^{-y}\frac{dy}{dx} - \frac{e^{-y}}{x} = -\frac{1}{2x^{2}} \Rightarrow \text{Put } e^{-y} = z$$

$$\frac{-dz}{dx} - \frac{z}{x} = -\frac{1}{2x^{2}} \Rightarrow xdz + zdx = \frac{dx}{2x}$$

$$d(xz) = \frac{dx}{2x} \Rightarrow xz = \frac{1}{2} \log_{e} x + c$$

$$Xe^{-y} = \frac{1}{2} \log_{e} x + x, \text{ passes through (e, 1)}$$

$$\Rightarrow c = \frac{1}{2}$$

$$xe^{-y} = \frac{\log_{e} ex}{2}$$

$$e^{-y} = \frac{1}{2} \Rightarrow y = \log_{e} 2$$

An Unmatched Experience of Offline KOTA CLASSROOM For JEE

New batch Starting from : 22nd Sept. 2021

MOTION[®] JEE MAIN 2021

ANSWER KEY

- The locus of the mid points of the chords of the hyperbola $x^2 y^2 = 4$, which touch the parabola 17. $y^2 = 8x$ is : (2) $x^{2}(x - 2) = y^{3}$ (4) $y^{3}(x - 2) = x^{2}$ Ans. (3)
- Sol. $T = S_1$ $xh - yk = h^2 - k^2$ $y = \frac{xh}{2k} - \frac{(h^2 - k^2)}{k}$

this touches $y^2 = 8x$ then $c = \frac{a}{m}$

$$\begin{pmatrix} \frac{k^2 - h^2}{k} \end{pmatrix} = \frac{2k}{h}$$

$$2y^2 = x(y^2 - x^2)$$

$$y^2(x - 2) = x^3$$
The value of
$$\int_{\pi}^{\frac{\pi}{2}} \left(\frac{1 + \sin^2 x}{1 + \pi^{\sin x}} \right) dx$$
 is :

(1)
$$\frac{3\pi}{2}$$
 (2) $\frac{\pi}{2}$
(3) $\frac{3\pi}{4}$ (4) $\frac{5\pi}{4}$

Ans. (3)

18.

Sol. I =
$$\int_{0}^{\frac{\pi}{2}} \frac{(1 + \sin^{2}x)}{(1 + \pi^{\sin x})} + \frac{\pi^{\sin x}(1 + \sin^{2}x)}{(1 + \pi^{\sin x})} dx$$
$$I = \int_{0}^{\frac{\pi}{2}} (1 + \sin^{2}x) dx$$
$$I = \frac{\pi}{2} + \frac{\pi}{2} \cdot \frac{1}{2} = \frac{3\pi}{4}$$

19.
$$\lim_{x \to 2} \left(\sum_{n=1}^{9} \frac{x}{n(n+1)x^2 + 2(2n+1)x + 4} \right) \text{ is equal to } :$$
$$(1) \frac{7}{36} \qquad (2) \frac{5}{24}$$
$$(3) \frac{1}{5} \qquad (4) \frac{9}{44}$$

$$(3)\frac{1}{5}$$

Ans. (4)

Sol.
$$S = \lim_{x \to 2} \sum_{n=1}^{9} \frac{x}{n(n+1)x^2 + 2(2n+1)x + 4}$$

 $S = \sum_{n=1}^{9} \frac{x}{4(n^2 + 3n + 2)} = \frac{1}{2} \sum_{n=1}^{9} \left(\frac{1}{n+1} - \frac{1}{n+2}\right)$
 $S = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{11}\right) = \frac{9}{44}$

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE New batch Starting from : 22nd Sept. 2021

ANSWER KEY

- **20.** The point P (-2 $\sqrt{6}$, $\sqrt{3}$) lies on the hyerpbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ having eccentricity $\frac{\sqrt{5}}{2}$. If the tangent and normal at P to the hyerpbola intersect its conjugate axis at the points Q and R respectively, then QR is equal to :
 - (1) $6\sqrt{3}$ (2) $4\sqrt{3}$
 - (3)6 (4)3√6
- Ans. (1)
- **Sol.** P($-2\sqrt{6}$, $\sqrt{3}$) lies on hyperbola

$$\Rightarrow \frac{24}{a^2} - \frac{3}{b^2} = 1.....(i)$$

$$e = \frac{\sqrt{5}}{2} \Rightarrow b^2 = a^2 \left(\frac{5}{4} - 1\right) \Rightarrow 4b^2 = a^2$$
Put in (i)
$$\Rightarrow \frac{6}{b^2} - \frac{3}{b^2} = 1 \Rightarrow b = \sqrt{3}$$

$$\Rightarrow a = \sqrt{12}$$

$$\frac{x^2}{12} - \frac{y^2}{3} = 1$$
Tangent at P :
$$\frac{-x}{\sqrt{6}} - \frac{y}{\sqrt{3}} = 1 \Rightarrow Q(0, \sqrt{3})$$
Slope of T = $-\frac{1}{\sqrt{2}}$
Normal at P :
$$y - \sqrt{3} = \sqrt{2}(x + 2\sqrt{6})$$

$$\Rightarrow R = (0, 5\sqrt{3})$$

$$OR = 6\sqrt{3}$$

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

New batch Starting from : 22nd Sept. 2021

MOTION[™] JEE MAIN 2021

Section B

- Let $\binom{n}{k}$ denote ⁿC_kand $\begin{bmatrix} n \\ k \end{bmatrix} = \begin{cases} \binom{n}{k}, \text{ if } 0 \le k \le n \\ 0, \text{ otherwise} \end{cases}$ If $A_k = \sum_{i=0}^{9} \binom{9}{i} \begin{bmatrix} 12\\12-k+i \end{bmatrix} + \sum_{i=0}^{8} \binom{8}{i} \begin{bmatrix} 13\\13-k+i \end{bmatrix}$ and $A_4 - A_3 = 190$ p, then p is equal to ______
- Ans.

1.

(49) $A_{k} = \sum_{i=0}^{9} C_{i}^{12} C_{k-i} + \sum_{i=0}^{8} C_{i}^{13} C_{k-i}$ Sol. $\begin{array}{l} \mathsf{A}_k = \ ^{21}\mathsf{C}_k \ + \ ^{21}\mathsf{C}_k \ = 2.\ ^{21}\mathsf{C}_k \\ \mathsf{A}_4 \ - \ \mathsf{A}_3 \ = \ 2 \ (^{21}\mathsf{C}_4 \ - \ ^{21}\mathsf{C}_3) \ = \ 2(5985 \ -1330) \\ \mathsf{190p} \ = \ 2 \ (5985 \ - \ 1330) \ \Rightarrow \ \mathsf{p} \ = \ 49 \end{array}$

The least positive integer n such that $\frac{(2i)^n}{(1-i)^{n-2}}$, $i = \sqrt{-1}$, is a positive integer is 2.

Ans. (6)

Sol.
$$\frac{(2i)^n}{(1-i)^{n-2}} = \frac{(2i)^n}{(-2i)^{\frac{n-2}{2}}}$$

= $\frac{(2i)^{\frac{n+2}{2}}}{(-1)^{\frac{n-2}{2}}} = \frac{(2)^{\frac{n+2}{2}}i^{\frac{n+2}{2}}}{(-1)^{\frac{n-2}{2}}}$

This positive integer for n = 6

- If the projection of the vector $\hat{i} + 2\hat{j} + \hat{k}$ on the sum of the two vectors $2\hat{i} + 4\hat{j} 5\hat{k}$ and 3. $-\lambda \hat{i} + 2\hat{j} + 3\hat{k}$ is 1, then λ is equal to _____.
- (5) Ans.

Sol.
$$\vec{a} = \vec{i} + 2\vec{j} + \vec{k}$$

 $\vec{b} = (2 - \lambda)\hat{i} + 6\hat{j} - 2\hat{k}$
 $\frac{\vec{a}.\vec{b}}{|\vec{b}|} = 1, \vec{a}.\vec{b} = 12 - \lambda$
 $(\vec{a}.\vec{b}) = |\vec{b}|^2$
 $\lambda^2 - 24\lambda + 144 = \lambda^2 - 4\lambda + 4 + 40$
 $20\lambda = 100 \Rightarrow \lambda = 5.$

MOTION[™] JEE MAIN 2021

ANSWER KEY

4. The sum of all 3-digit numbers less than or equal to 500, that are formed without using the digit "1" and they all are multiple of 11, is _____.

Ans. (7744) Sol. 209, 22

209, 220, 231,, 495 Sum = $\frac{27}{2}(209 + 495) = 9504$ Number containing 1 at unit place $\begin{array}{r} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 5 & 1 \\ 3 & 1 & 9 \end{array}$ Number containing 1 at 10th place $\begin{array}{r} 4 & 1 \\ 8 \\ Required = 9501 - (231 + 341 + 451 + 319 + 418) = 7744 \end{array}$

- **5.** Let A be a 3×3 real matrix. If det (2Adj (2Adj (Adj (2A)))) = 2^{41} , then the value of det (A²) equals ______.
- Ans.

(4)

- **Sol.** adj (2A) = 2^2 adjA \Rightarrow adj(adj (2A)) = adj(4 adjA) = 16 adj (adj A) = 16 |A|A \Rightarrow adj (32 |A| A) = (32 |A|)^2 adj A 12(32|A|)^2 |adj A| = 2^3 (32|A|)⁶ |adj A| $2^3 \cdot 2^{30} |A|^6 \cdot |A|^2 = 2^{41}$ $|A|^8 = 2^8 \Rightarrow |A| = \pm 2$ $|A|^2 = 4$
- **6.** Let a and b respectively be the points of local maximum and local minimum of the function $f(x) = 2x^3 3x^2 12x$. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4 A is equal to ______
- Ans. (114)

Sol. $f'(x) = 6x^2 - 6x - 12 = 6(x - 2) (x + 1)$ Point = (2,-20) & (-1,7)

Т

$$A = \int_{-1}^{0} (2x^{3} - 3x^{2} - 12x) dx + \int_{0}^{2} (12x + 3x^{2} - 2x^{3}) dx$$
$$A = \left(\frac{x^{4}}{2} - x^{3} - 6x^{2}\right)_{-1}^{0} + \left(6x^{2} + x^{3} - \frac{x^{4}}{2}\right)_{0}^{2}$$
$$4A = 114$$

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE New batch Starting from : 22nd Sept. 2021

MOTION[®] JEE MAIN 2021

7. Let a_1 , a_2 a_{10} be an AP with common difference -3 and b_1 , b_2 b_{10} be a GP with common ratio 2. Let $c_k = a_k + b_k$, k = 1, 2,, 10. If $c_2 = 12$ and $c_3 = 13$, then $\sum_{k=1}^{10} c_k$ is equal to

Ans. (2021)

Sol. $c_2 = a_2 + b_2 = a_1 - 3 + 2b_1 = 12$ $a_1 + 2b_1 = 15$ (1) $c_3 = a_3 + b_3 = a_1 - 6 + 4b_1 = 13$ $a_1 + 4b_1 = 19$ (2) from (1) & (2) $b_1 = 2$, $a_1 = 11$ $\sum_{k=1}^{10} C_k = \sum_{k=1}^{10} (a_k + b_k) = \sum_{k=1}^{10} a_k + \sum_{k=1}^{10} b_k$ $= \frac{10}{2} (2 \times 11 + 9 \times (-3)) + \frac{2(2^{10} - 1)}{2 - 1}$ = 5(22 - 27) + 2(1023)= 2046 - 25 = 2021

8. Let $\lambda \neq 0$ be in R. If α and β are the roots of the equation $x^2 - x + 2\lambda = 0$ and α and γ are the roots of the equation $3x^2 - 10x + 27\lambda = 0$, then $\frac{\beta\gamma}{\lambda}$ is equal to _____.

Ans. (18)

ANSWER KEY

9. Let Q be the foot of the perpendicular from the point P(7, -2, 13) on the plane containing the lines , $\frac{x+1}{6} = \frac{y-1}{7} = \frac{z-3}{8}$ and $\frac{x-1}{3} = \frac{y-2}{5} = \frac{z-3}{7}$.

Then
$$(PQ)^2$$
, is equal to ____ **Ans.** (96)

Sol. Containing the line $\begin{vmatrix} x+1 & y-1 & z-3 \\ 6 & 7 & 8 \\ 3 & 5 & 7 \end{vmatrix} = 0$ 9(x + 1) - 18 (y - 1) + 9(z - 3) = 0 x - 2y + z = 0 $PQ = \left| \frac{7 + 4 + 13}{\sqrt{6}} \right| = 4\sqrt{6}$ $PQ^2 = 96$

10. Let the mean and variance of four numbers 3, 7, x and y(x > y) be 5 and 10 respectively. Then the mean of four numbers 3 + 2x, 7 + 2y, x + y and x - y is _____.

Ans. (12)

Sol. $5 = \frac{3+7+x+y}{4} \Rightarrow x+y = 10$ $Var(x) = 10 = \frac{3^2+7^2+x^2+y^2}{4} - 25$ $140 = 49 + 9 + x^2 + y^2$ $x^2 + y^2 = 82$ x + y = 10 $\Rightarrow (x, y) = (9, 1)$ Four numbers are 21, 9, 10, 8 Mean = $\frac{48}{4} = 12$

हो चुकी है ऑफलाइन क्लासरूम की शुरूआत अपने सपने को करो साकार, कोटा कोचिंग के साथ

Nitin Vijay (NV Sir) Managing Director Exp. : 18 yrs

Directors of Nucleus Education & Wizard of Mathematics

Now Offline associated with Motion Kota Classroom

Akhilesh Kanther (AKK Sir) Exp. : 17 yrs

Vishal Joshi Surendra K. Mishra (SKM Sir) Exp. : 18 yrs Exp. : 16 yrs

Gavesh Bhardwai (GB Sir) Exp. : 17 yrs

Academic Pillars of JEE MOTION KOTA

(VJ Sir)

Ram Ratan Dwivedi (RRD Sir) Joint Director Exp.: 20 yrs

Anurag Garg (AG Sir) Sr. Faculty Exp. : 17 yrs

Vijay Pratap Singh (VPS Sir) Vice President Exp. : 20 yrs

Nikhil Srivastava (NS Sir) Head JEE Academics Exp.: 17 yrs

Aatish Agarwal (AA Sir) Sr. Faculty Exp. : 17 yrs

Vipin Sharma

Jayant Chittora (JC Sir) Sr. Faculty Exp. : 16 yrs

Durgesh Pandey (Pandey Sir) Sr. Faculty Exp. : 8 yrs

Amit Verma

(AV Sir)

Joint Director

Exp. : 16 yrs

Arjun Gupta (Arjun Sir) Sr. Faculty Exp. : 14 yrs

Devki Nandan Pathak Avinash Kishore (DN Sir) Sr. Faculty Exp. : 13 yrs

(AVN Sir) Sr. Faculty Exp. : 9 yrs

Join **English & Hindi Medium** DROPPER BATCH **Online + Offline Mode**

Batch Starting from : 22nd Sept. 2021