

JEE | NEET | Foundation

29900+ SELECTIONS SINCE 2007

हो चुकी है ऑफलाइन क्लासरूम की शुरूआत अपने सपने को करो साकार, कोटा कोचिंग के साथ

Nitin Vijay (NV Sir) Managing Director Exp. : 18 yrs

Directors of Nucleus Education & Wizard of Mathematics

Now Offline associated with Motion Kota Classroom

Akhilesh Kanther (AKK Sir) Exp. : 17 yrs

Vishal Joshi (VJ Sir) Exp. : 18 yrs

Surendra K. Mishra (SKM Sir) Exp.: 16 yrs

Gavesh Bhardwaj (GB Sir) Exp. : 17 yrs

Academic Pillars of JEE Motion Kota

Ram Ratan Dwivedi (RRD Sir) Joint Director Exp.: 20 yrs

Amit Verma (AV Sir) Joint Director Exp.: 16 yrs

Vijay Pratap Singh (VPS Sir) Vice President Exp.: 20 yrs

Nikhil Srivastava (NS Sir) Head JEE Academics Exp. : 17 yrs

Aatish Agarwal (AA Sir) Sr. Faculty Exp. : 17 yrs

Jayant Chittora (JC Sir) Sr. Faculty Exp.: 16 yrs

Anurag Garg (AG Sir) Sr. Faculty Exp.: 17 yrs

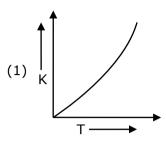
Online + Offline Mode

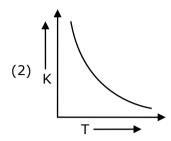
Arjun Gupta (Árjun Sir) Sr. Faculty Exp.: 14 yrs

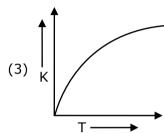
(DN Sir) Sr. Faculty Exp.: 13 yrs

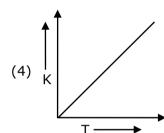
Devki Nandan Pathak Avinash Kishore (AVN Sir) Sr. Faculty Exp.: 9 yrs

Vipin Sharma (VS Sir) Sr. Faculty Exp.: 12 yrs


Durgesh Pandey (Pandey Sir) Sr. Faculty Exp.: 8 yrs


Join English & Hindi Medium **EE DROPPER BATC**


Batch Starting from: 22nd Sept. 2021


SECTION - A

Q.1 Which one of the following given graphs represents the variation of rate constant (k) with temperature (T) for an endothermic reaction?

- Sol. By observation we get this plot during measurable temperatures
- Number of paramagnetic oxides among the following given oxides is _____ Li₂O, CaO, Na₂O₂, 2. KO₂, MgO and K₂O

$$Li_2O \Rightarrow$$

MgO
$$\Rightarrow$$

$$Ca^{2+}$$
 O^2

$$K_2O \Rightarrow$$

$$Mg^2 + O^2$$

$$KO_2 \Rightarrow K^+ O_2^{0}$$

$$O_2^{2-}$$
 \Rightarrow Complete octet, diamagnetic

$$O^{2^-} \Rightarrow \ \sigma_{1s}^2 \sigma_{1s}^{*2} \sigma_{2s}^2 \sigma_{2s}^{*2} \sigma_{2px}^2 \pi_{2py}^2 \simeq \pi_{2pz}^2 \pi_{2py}^{*2} \simeq \pi_{2pz}^{*2} \text{(dia)}$$

$$O_2^- \Rightarrow \sigma_{1s}^2 \sigma_{1s}^{*2} \sigma_{2s}^2 \sigma_{2s}^{*2} \sigma_{2px}^2 \pi_{2py}^2 \simeq \pi_{2pz}^2 \pi_{2py}^{*2} \simeq \pi_{2pz}^{*2}$$
 (para)

3. The oxide without nitrogen-nitrogen bond is:

(2)
$$N_2O_3$$

Sol. 1

(1)
$$N = N^+ - O^-$$

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

$$\begin{array}{c} O \\ N = N \\ O^{-} \end{array}$$
 unsymmetrical

(3)
$$N - O - N$$
 symmetrical

$$(4) \begin{array}{c} O^{-} \\ N \\ O \end{array} - O - \begin{array}{c} + \\ N \\ O^{-} \end{array}$$

4. Identify A in the following reaction.

Sol. 2

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

5. Which one of the following gives the most stable Diazonium salt?

(B)
$$CH_3 - CH_2 - CH_2 - NH_2$$

Sol. 4

$$(1) \qquad NH_2 \xrightarrow{NaNO_2 + HCl} \stackrel{+}{N = N}$$

(3)
$$CH_{3} - CH - NH_{2} \xrightarrow{NaNO_{2} + HCI} H_{3}C - CH - N = N$$

$$CH_{3} CH_{3}$$

(4)
$$\sim$$
 NH - CH₃ $\xrightarrow{\text{NaNO}_2 + \text{HCl}}$ Diazonium salt not form \sim NaNO₂ + HCl \rightarrow \sim N - CH₃ (N, alkyl nitrossoamine

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

Q.6 Given below are two statements:

> Statement I: The nucleophilic addition of sodium hydrogen sulphite to an aldehyde or a ketone involves proton transfer to form a stable ion.

Statement II: The nucleophilic addition of hydrogen cyanide to an aldehyde or a ketone yields amine as final product.

In the light of the above statements, choose the most appropriate answer from the option given below:

- (1) Statement I is false but Statement II is true.
- (2) Statement I is true but Statement II is false.
- (3) Both Statement I and Statement II are true.
- (4) Both Statement I and Statement II are false.
- Sol.

Statement I: Correct

$$C = O \xrightarrow{\text{NaHSO}_3} C \xrightarrow{O} C \xrightarrow{\text{NaHSO}_3} C$$

(White crystalline soluble ppt)

Statement II:

$$C = O \xrightarrow{HC} C \stackrel{OH}{\longleftarrow} C$$

$$\downarrow HCN \qquad [Cyanohydrin]$$

$$\downarrow amin \qquad - Wrong statemet$$

K(Amine not formed)

- Q.7 Hydrogen peroxide reacts with iodine in basic medium to give:
- (3) IO₃
- (4) IO⁻

Sol.

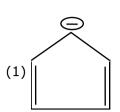
$$I_2 + H_2O_2 + 2HO^- \rightarrow 2I^- + 2H_2O + O_2$$

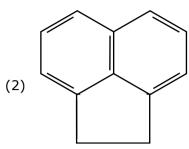
In the given chemical reaction, colors of the Fe^{2+} and Fe^{3+} ions, are respectively: **Q.8**

$$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$$

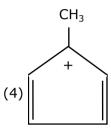
- (1) Green, Yellow (2) Green, Orange (3) Yellow, Orange (4) Yellow, Green

Sol.

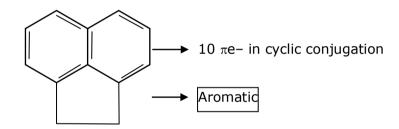

Colour of Fe²⁺ is observed green and Fe³⁺ is yellow


An Unmatched Experience of Offline

KOTA CLASSROOM For JEE



Q.9 Which one of the following compounds is aromatic in nature?



Sol. 1

(1) (Acenaphthene)

- ® $4\pi e^-$ in ring conjugation ⇒ Anti Aromatic
- $\stackrel{\oplus}{}$ CH₃ \Rightarrow $4\pi e^-$ in ring conjugation \Rightarrow Antiaromatic
- $\Theta \Rightarrow 6\pi e^{-}$ in ring conjugation \Rightarrow Aromatic Cyclopentadienyl anion
- Q.10 The Crystal Field Stabilization Energy (CFSE) and magnetic moment (spin-only) of an octahedral aqua complex of a metal ion (M^{z+}) are $-0.8 \Delta_0$ and 3.87 BM, respectively. Identify (M^{z+}):
 - (1) Mn⁴⁺
- $(2) Co^{2+}$
- $(3) Cr^{3+}$
- $_{(4)} V^{3+}$

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

Sol.

= 2 unpaired
$$e^-$$

 $\mu = 2.89Bm$

=
$$-0.8 \Delta_0$$

$$1 \downarrow 1 \downarrow 1$$

$$t_{2q}$$
3 unparied $e^- \Rightarrow \mu = 3.87 \text{ BM}$

hence d⁷ configuration is of Co²⁺.

In the following sequence of reactions,

$$C_3H_6 \xrightarrow{H^+/H_2O} A \xrightarrow{KIO} B + C$$

The compounds B and C respectively are:

(1) CI₃COOK, HCOOH

(2) CI₃COOK, CH₃I

(3) CHI₃, CH₃ COOK

(4) CH₃I, HCOOK

Sol.

$$CH_{3} - CH = CH_{2} \xrightarrow{H^{\oplus}/H_{2}O} CH_{3} - CH - CH_{3}$$

$$(Iodoform) \qquad KOI/dil KOH)$$

$$CHI_{3} + CH_{3} - C - OK$$

$$O$$

$$(B) (C)$$

- Q.12 The stereoisomers that are formed by electrophilic addition of bromine to trans-but-2-ene is /are:
 - (1) 2 enantiomers

(2) 2 enantiomers and 2 mesomers

(3) 2 identical mesomers

(4) 1 racemic and 2 enantiomers

An Unmatched Experience of Offline

Sol. 3

meso product

Q.13 Identify the element for which electronic configuration in +3 oxidation state is [Ar]3d⁵:

(2) Mn

(3) Fe

(4) Ru

Sol. 3

 $Fe^{3+}[Ar]3d^5$

Q.14 The potassium ferrocyanide solution gives a Prussian blue colour, when added to :

(2) FeCl₂

 $(3) FeCl_3$

(4) CoCl₃

Sol. 3

$$\operatorname{FeCl}_3 + \operatorname{K}_4[\operatorname{Fe}(\operatorname{CN})_6] \to \operatorname{Fe}_4[\operatorname{Fe}(\operatorname{CN})_6]_3$$

Prussionblue

Q.15 Match List -I with List -II

ridecii List I with List II.			
List -I (Colloid Preparation Method)		List-II (Chemical Reaction)	
(a)	Hydrolysis	(i)	$2AuCl_3 + 3HCHO + 3H_2O$ → 2Au(sol) + 3HCOOH + 6HCl
(b)	Reduction	(ii)	$As_2O_3 + 3H_2s \rightarrow As_2S_3(sol) + 3H_2O$
(c)	Oxidation	(iii)	$SO_2 + 2H_2S \rightarrow 3S(sol) + 2H_2O$
(d)	Double Decomposition	(iv)	$FeCl_3 + 3H_2O \rightarrow Fe(OH)_3(sol)+3HCl$

Choose the most appropriate answer from the options given below

$$(3)$$
 (a) $-(i)$, (b) - (iii) , (c) $-(ii)$, (d) $-(iv)$

$$(4) (a) -(i), (b)-(ii), (c) -(iv), (d) -(iii)$$

Sol. 1

According to type of reactions for preparation, colloids have been classified

Q.16 Water sample is called cleanest on the basis of which one of the BOD values given below:

- (1) 21 ppm
- (2) 15 ppm
- (3) 3 ppm
- (4) 11 ppm

Sol. 3

Clean water could have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more.

An Unmatched Experience of Offline

- Experimentally reducing a functional group cannot be done by which of the following reagents? Q.17
- (1) Na/H₂
- (2) Pd-C/H₂
- (3) Pt-C/H₂
- (4) Zn/H₂O

Sol. 1

Solution NaH₂ is not reducing agent

In the following sequence of reactions a compound A, (molecular formula $C_6H_{12}O_2$) with a Q.18 straight chain structure gives a C₄ carboxylic acid. A is.

$$A \xrightarrow{\text{LiAIH}_4} B \xrightarrow{\text{Oxidation}} C_4 - \text{Carboxylic acid}$$

- (1) $CH_3 CH_2 COO CH_2 CH_2 CH_3$
- (2) CH₃ -CH₂ CH₂ COO- CH₂ CH₃

(3)
$$CH_3 - CH_2 - CH - CH_2 - O - CH = CH_3$$

(4)
$$CH_3 - CH_2 - CH_2 - O - CH = CH - CH_2 - OH$$

Sol.

$$\begin{array}{c} \mathsf{CH_{3}} - \mathsf{CH_{2}} - \mathsf{CH_{2}} - \mathsf{C} - \mathsf{O} - \mathsf{CH_{2}} - \mathsf{CH_{3}} \\ | | \\ \mathsf{O} \\ & \downarrow \\ (1) \ \mathsf{LiAlH_{4}} \\ (2) \ \mathsf{H3O} \\ \\ \mathsf{CH_{3}} - \mathsf{CH_{2}} - \mathsf{CH_{2}} - \mathsf{CH_{2}} - \mathsf{CH_{2}} - \mathsf{OH} + \mathsf{CH_{3}} - \mathsf{CH_{2}} - \\ | \mathsf{CH_{3}} - \mathsf{CH_{2}} - \mathsf{CH_{2}} - \mathsf{CH_{2}} - \mathsf{OH} \\ & \downarrow \\ [\mathsf{O}] \\ & \downarrow \\ \mathsf{CH_{3}} - \mathsf{CH_{2}} - \mathsf{CH_{2}} - \mathsf{C} - \mathsf{OH} \\ & \mid \mathsf{I} \\ \end{array} \quad \begin{bmatrix} \mathsf{C_{4}carboxylic\,acid} \\ \mathsf{II} \\ \end{bmatrix}$$

- Calamine and Malachite, respectively, are the ores of: 0.19
 - (1) Aluminium and Zinc

(2) Copper and Iron

(3) Zinc and Copper

(4) Nickel and Aluminium

Sol.

Calamine \Rightarrow ZnCO₃

Malachite \Rightarrow Cu(OH)₂·CuCO₃

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

- Monomer units of Dacron polymer are: Q.20
 - (1) ethylene glycol and phthalic acid
 - (2) ethylene glycol and terephthalic acid
 - (3) glycerol and phthalic acid
 - (4) glycerol and terephtalic acid
- Sol.

(Terephthalic acid) (Ethylene acid) $\begin{array}{c} & & & \\ -C \longrightarrow & C \longrightarrow & CH_2 - CH_2 - O \longrightarrow & \\ 0 \longrightarrow & O \longrightarrow & D \end{array}$

Section B

- If 80 g of copper sulphate CuSO₄.5H₂O is dissolved in deionised water to make 5 L of solution. Q.1 The concentration of the copper sulphate solution is $x \times 10^{-3}$ mol L⁻¹. The value of x is [Atomic masses Cu: 63.54 u, S: 32u, O: 16 u, H:1 u]
- Sol.

Moles of $CuSO_4 \cdot 5H_2O = \frac{80}{249.54}$

Molarity = $\frac{80}{249.54}$ = 64.117×10⁻³

Nearest integer, x = 64

The molar solubility of $Zn(OH)_2$ in 0.1 M NaOH solution is $x \times 10^{-18}$ M. The value of x is Q.2 ____(Nearest integer)

(Given: The solubility product of $Zn(OH)_2$ is 2×10^{-20})

Sol.

$$Zn(OH)_2(s) \longrightarrow Zn^{+2} (aq) + 2OH^{-}(aq)$$

 $Zn(OH)_2(s) \longrightarrow Zn^{+2} (aq) + 2OH^{-}(aq)$ S (0 $K_{sp} = S(0.1)^2$ $2 \times 10^{-20} = s \times 10^{-2} \Rightarrow s = 2 \times 10^{-18}$ $(0.1+2s) \sim 0.1$

$$= x \times 10^{-18}$$

$$x = 2$$

x = 2

- If the conductivity of mercury at 0°C is $1.07 \times 10^6 \ \text{Sm}^{\text{-1}}$ and the resistance of a cell containing Q.3 mercury is 0.243 Ω , then the cell constant of the is x × 10⁴ m⁻¹. The value of x is _____. (Nearest integer)
- Sol. 26

 $k = 1.07 \times 10_6 \, \text{Sm}_{-1}, \, R = 0.243 \, \Omega$

$$G = \frac{1}{R} = \frac{1}{0.243} \Omega^{-1}$$

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

$$K = G \times G^*$$

$$G^* = \frac{k}{G} = \frac{1.07 \times 10^6}{\frac{1}{0.243}} \approx 26 \times 10^4 \text{ m}^{-1}$$

- Q.4 The sum of oxidation states of two silver ions in $[Ag(NH_3)_2]$ $[Ag(CN)_2]$ complex is
- Sol. 2

$$[Ag(NH_3)_2] + [Ag(CN)_2]^ \downarrow$$
 $+1$
 $+1$

- Q.5 The spin-only magnetic moment value of B_2^+ species is _____×10⁻² BM. (Nearest integer) [Given : $\sqrt{3} = 1.73$]
- Sol. 173

$$\begin{split} B_{2}^{+} &\Rightarrow \sigma_{1s}^{2} \sigma_{1s}^{*2} \sigma_{2s}^{2} \sigma_{2s}^{*2} \pi_{2py}^{1} \underline{\boldsymbol{\sim}} \pi_{2pz}^{0} \\ &\Rightarrow 9e^{-} \\ \mu &= \sqrt{1 \left(1 + 2 \right)} = \sqrt{3} \ BM \\ &= 1.73 \ BM \\ &= 1.73 \ \times 10^{-2} \ BM \end{split}$$

- Q.6 For the reaction $2NO_2(g) \rightleftharpoons N_2O_4(g)$, when $\Delta S = -176.0$ JK ⁻¹ and $\Delta H = -57.8$ kJ mol⁻¹, the magnitude of ΔG at 298 K for the reaction is _____ kJ mol⁻¹. (Nearest integer)
- Sol. 5

$$\Delta G = \Delta H - T\Delta S$$

$$\Delta G = 57.8 - \frac{298(-176)}{1000}$$

$$\Delta G = -5.352 \text{kJ/mole}$$

|Nearest integer value| =5

- Q.7 The number of atoms in 8 g of sodium is $x \times 10^{23}$. The value of x is _____ (Nearest integer) [Given : $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$] Atomic mass of $N_A = 23.0 \text{ u}$
- Sol. 2

No. of atoms =
$$\frac{8}{23}$$
6.02×10²³ = 2.09×10²³
 $\frac{\sim}{2}$ 2×10²³
= x ×10²³

X = 2

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

ANSWER KEY

- A 50 watt bulb emits monochromatic red light of wavelength of 795 nm. The number of photons emitted per second by the bulb is $\times \times 10^2$. The value of x is _____ . (Nearest integer) [Given: h = 6.63 $\times 10^{-34}$ Js and c = 3.0 $\times 10^8$ ms⁻¹] Q.8
- Sol.

Total energy per sec. = 50 J

Total energy per sec. = 5
$$50 = \frac{n \times 6.63 \times 10^{-34} \times 3 \times 10^{8}}{795 \times 10^{-9}}$$

 $n = 1998.49 \times 10^{-3}$ [n = no. of photons per second] = 1.998 × 10²⁰ $\approx 2 \times 10^{20}$

 $= x \times 10^{20}$

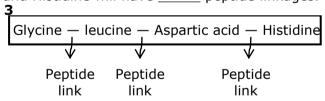
x = 2

- Q.9 An empty LPG cylinder weighs 14.8 kg. When full, it weighs 29.0 kg and shows a pressure of 3.47 atm. In the course of use at ambient temperature, the mass of the cylinder is reduced to 23.0 kg. The final pressure inside the cylinder is _____ atm. (Nearest integer) (Assume LPG to be an ideal gas)
- Sol.

Initial mass of gas = 29 - 14.8 = 14.2 Kg

mass of gas used = 29 - 23 = 6 Kg

gas left = 14.2 - 6 = 8.2 Kg


(1)
$$3.47 \times V = \left(\frac{14.2 \times 10^3}{M}\right) \times R \times T$$

(2)
$$p \times V = \left(\frac{8.2 \times 10^3}{M}\right) \times R \times T$$

Divide:

$$\frac{\binom{1}{2}}{\binom{2}} \Rightarrow \frac{3.74}{P} = \frac{14.2}{8.2}$$

- Q.10 A peptide synthesized by the reactions of one molecule each of Glycine, Leucine, Aspartic acid and Histidine will have _____ peptide linkages.
- Sol.

Total (3) peptide linkages are present

3 peptide linkage

Sol. (3)

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

हो चुकी है ऑफलाइन क्लासरूम की शुरूआत अपने सपने को करो साकार, कोटा कोचिंग के साथ

Nitin Vijay (NV Sir) Managing Director Exp. : 18 yrs

Directors of Nucleus Education & Wizard of Mathematics

Now Offline associated with Motion Kota Classroom

Akhilesh Kanther (AKK Sir) Exp. : 17 yrs

Vishal Joshi Surendra K. Mishra (VJ Sir) (SKM Sir) Exp. : 18 yrs Exp.: 16 yrs

Gavesh Bhardwai (GB Sir) Exp. : 17 yrs

Academic Pillars of JEE Motion Kota

Ram Ratan Dwivedi (RRD Sir) Joint Director Exp.: 20 yrs

Amit Verma (AV Sir) Joint Director Exp.: 16 yrs

Vijay Pratap Singh (VPS Sir) Vice President Exp.: 20 yrs

Nikhil Srivastava (NS Sir) Head JEE Academics Exp.: 17 yrs

Aatish Agarwal (AA Sir) Sr. Faculty Exp. : 17 yrs

Jayant Chittora (JC Sir) Sr. Faculty Exp. : 16 yrs

Anurag Garg (AG Sir) Sr. Faculty Exp.: 17 yrs

Arjun Gupta (Arjun Sir) Sr. Faculty Exp.: 14 yrs

Devki Nandan Pathak Avinash Kishore (DN Sir) Sr. Faculty Exp.: 13 yrs

(AVN Sir) Sr. Faculty Exp. : 9 yrs

Vipin Sharma (VS Sir) Sr. Faculty Exp.: 12 yrs

Durgesh Pandey (Pandey Sir) Sr. Faculty Exp. : 8 yrs

Join **English & Hindi Medium** DROPPER BATCH

Online + Offline Mode

Batch Starting from: 22nd Sept. 2021