

ANSWER KEY

2021

MATHEMATICS
Paper-2
QUESTION WITH ANSWER

32700+ SELECTIONS SINCE 2007

Motion[®]

हो चुकी है ऑफलाइन क्लासरुम की शुरुआत अपने सपने को करो साकार, कोटा कोचिंग के साथ

Nitin Vijay (NV Sir) Managing Director Exp. : 18 yrs

Directors of Nucleus Education & Wizard of Mathematics

Now Offline associated with Motion Kota Classroom

Akhilesh Kanther (AKK Sir) Exp. : 17 yrs

Vishal Joshi Suren (VJ Sir) (S Exp. : 18 yrs Ex

Surendra K. Mishra (SKM Sir) Exp. : 16 yrs

Gavesh Bhardwaj (GB Sir) Exp. : 17 yrs

Academic Pillars of JEE Motion Kota

Ram Ratan Dwivedi (RRD Sir) Joint Director Exp.: 20 yrs

Amit Verma (AV Sir) Joint Director Exp.: 16 yrs

Vijay Pratap Singh (VPS Sir) Vice President Exp.: 20 yrs

Nikhil Srivastava (NS Sir) Head JEE Academics Exp. : 17 yrs

Aatish Agarwal (AA Sir) Sr. Faculty Exp. : 17 yrs

Jayant Chittora (JC Sir) Sr. Faculty Exp. : 16 yrs

Anurag Garg (AG Sir) Sr. Faculty Exp.: 17 yrs

Arjun Gupta (Arjun Sir) Sr. Faculty Exp.: 14 yrs

Devki Nandan Pathak (DN Sir) Sr. Faculty Exp.: 13 yrs

Avinash Kishore (AVN Sir) Sr. Faculty Exp.: 9 yrs

Vipin Sharma (VS Sir) Sr. Faculty Exp. : 12 yrs

Durgesh Pandey (Pandey Sir) Sr. Faculty Exp. : 8 yrs

Join JEE DROPPER BATCH

Online + Offline Mode

SECTION - A

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks : +2 If three or more options are correct but ONLY two options are

chosen, both of which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and

it is a correct option:

Zero Marks : 0 If unanswered; : -2 In all other cases. Negative Marks

For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to

correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option(s) (i.e. the question is unanswered) will get 0 marks and

choosing any other option(s) will get -2 marks.

1. Let

 $S_1 = \{(i,j,k): i,j,k \in \{1,2,...,10\}\},\$

 $S_2 = \{(i,j): 1 \le i < j+2 \le 10, i,j \in \{1,2,...,10\}\},\$

 $S_3 = \{(i,j,k,l): 1 \le i < j < k < l, i,j,k,l \in \{1,2,...,10\}\}$

and

 $S_4 = \{(i,j,k,l): i,j,k \text{ and } l \text{ are distinct elements in } \{1,2,...,10\}\}.$

If the total number of elements in the set S_r is n_r , r=1,2,3,4, then which of the following statements is (are) TRUE?

 $(A)n_1=1000$

(B) n_2 =44 (C) n_3 =220 (D) $\frac{n_4}{12}$ = 420

Ans. A,B,D

2. Consider a triangle PQR having sides of lengths p,q and r opposite to the angles P,Q and R, respectively. Then which of the following statements is (are) TRUE?

$$(A)\cos P \ge 1 - \frac{p^2}{2qr}$$

(B)
$$\cos R \ge \left(\frac{q-r}{p+q}\right) \cos P + \left(\frac{p-r}{p+q}\right) \cos Q$$

$$(C)\frac{q+r}{p} < 2\frac{\sqrt{\sin Q \sin R}}{\sin P}$$

(D)If
$$p < q$$
 and $p < r$, then $\cos Q > \frac{p}{r}$ and $\cos R > \frac{p}{q}$

Ans. A,B

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

MOTION® JEE ADVANCED 2021

ANSWER KEY

Let $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}$ be a continuous function such that

$$f(0)=1 \text{ and } \int_0^{\frac{\pi}{3}} f(t)dt=0$$

Then which of the following statements is (are) TRUE?

- (A) The equation $f(x) 3\cos 3x = 0$ has at least one solution in $(0, \frac{\pi}{3})$
- (B) The equation $f(x) 3\sin 3x = -\frac{6}{\pi}$ has at least one solution in $(0, \frac{\pi}{3})$

(C)
$$\lim_{x\to 0} \frac{x \int_0^x f(t) dt}{1 - e^{x^2}} = -1$$

(D)
$$\lim_{x\to 0} \frac{\sin x \int_0^x f(t) dt}{x^2} = -1$$

Ans.

For any real numbers α and β , let $y_{\alpha,\beta}(x),x\in\mathbb{R}$, be the solution of the differential equation 4.

$$\frac{dy}{dx} + \alpha y = xe^{\beta x}, \ y(1) = 1$$

Let $S = \{y_{\alpha,\beta}(x): \alpha,\beta \in \mathbb{R}\}$. Then which of the following functions belong(s) to the set S?

(A) $f(x) = \frac{x^2}{2}e^{-x} + \left(e - \frac{1}{2}\right)e^{-x}$ (B) $f(x) = -\frac{x^2}{2}e^{-x} + \left(e - \frac{1}{2}\right)e^{-x}$

(A)
$$f(x) = \frac{x^2}{2}e^{-x} + \left(e - \frac{1}{2}\right)e^{-x}$$

(B)
$$f(x) = -\frac{x^2}{2}e^{-x} + \left(e - \frac{1}{2}\right)e^{-x}$$

(C)
$$f(x) = \frac{e^x}{2} \left(x - \frac{1}{2} \right) + \left(e - \frac{e^2}{4} \right) e^{-x}$$
 (D) $f(x) = \frac{e^x}{2} \left(\frac{1}{2} - x \right) + \left(e + \frac{e^2}{4} \right) e^{-x}$

(D)
$$f(x) = \frac{e^x}{2} \left(\frac{1}{2} - x \right) + \left(e + \frac{e^2}{4} \right) e^{-x}$$

Ans. A,C

Let O be the origin and $\overrightarrow{OA} = 2\hat{i} + 2\hat{j} + \hat{k}$, $\overrightarrow{OB} = \hat{i} - 2\hat{j} + 2\hat{k}$ and $\overrightarrow{OC} = \frac{1}{2}(\overrightarrow{OB} - \lambda \overrightarrow{OA})$ for some 5. λ >0. If $|\overrightarrow{OB} \times \overrightarrow{OC}| = \frac{9}{2}$, then which of the following statements is (are) TRUE ?

- (A) Projection of \overline{OC} on \overline{OA} is $-\frac{3}{2}$
- (B) Area of the triangle OAB is $\frac{9}{2}$
- (C) Area of the triangle ABC is $\frac{9}{2}$
- (D) The acute angle between the diagonals of the parallelogram with adjacent sides \overline{OA} and \overrightarrow{OC} is $\frac{\pi}{3}$

A,B,C Ans.

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

MOTION® JEE ADVANCED 2021

ANSWER KEY

- Let E denote the parabola $y^2 = 8x$. Let P = (-2,4), and let Q and Q' be two distinct points on E such that the lines PQ and PQ' are tangents to E. Let F be the focus of E. Then which of the following statements is (are) TRUE?
 - (A) The triangle PFQ is a right-angled triangle
 - (B) The triangle QPQ' is a right-angled triangle
 - (C) The distance between P and F is $5\sqrt{2}$
 - (D) F lies on the line joining Q and Q'

Ans. A,B

Section - 2

- This section contains THREE (03) question stems.
- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +2 If ONLY the correct numerical value is entered at the designated place;

Zero Marks : 0 In all other cases.

Question Stem for Question Nos. 7 and 8

Question Stem

Consider the region R ={ $(x,y) \in \mathbb{R} \times \mathbb{R} : x \ge 0$ and $y^2 \le 4-x$ }. Let \mathcal{F} be the family of all circles that are contained in R and have centers on the x-axis. Let C be the circle that has largest radius among the circles in \mathcal{F} . Let $(\alpha_t \beta)$ be a point where the circle C meets the curve $y^2 = 4-x$.

Ans. 1.5

8. The value of α is .

Ans. 2

Question Stem for Question Nos. 9 and 10

Question Stem

Let $f_1:(0,\infty)\to\mathbb{R}$ and $f_2:(0,\infty)\to\mathbb{R}$ be defined by

$$f_1(x) = \int_{0}^{x} \prod_{j=1}^{21} (t-j)^j dt, x>0$$

and
$$f_2(x) = 98(x-1)^{50} - 600(x-1)^{49} + 2450$$
, $x > 0$,

where, for any positive integer n and real numbers $a_1, a_2, ..., an$, $\prod_{i=1}^n a_i$ denotes the product of $a_1, a_2, ..., an$. Let m_i and n_i , respectively, denote the number of points of local minima and the number of points of local maxima of function f_i , i=1,2, in the interval $(0,\infty)$.

9. The value of $2m_1+3n_1+m_1n_1$ is _____ .

Ans. 57

10. The value of $6m_2+4n_2+8m_2n_2$ is ____.

Ans. 6

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

Question Stem for Question Nos. 11 and 12

Question Stem

Let $g_i: \left[\frac{\pi}{8}, \frac{3\pi}{8}\right] \to \mathbb{R}, i=1,2$, and $f: \left[\frac{\pi}{8}, \frac{3\pi}{8}\right] \to \mathbb{R}$ be functions such that

$$g_1(x)=1$$
, $g_2(x)=|4x-\pi|$ and $f(x)=\sin^2 x$, for all $x \in \left[\frac{\pi}{8}, \frac{3\pi}{8}\right]$

Define

$$s_{i} = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} f(x).g_{i}(x)dx, i = 1, 2$$

11. The value of $\frac{16S_1}{\pi}$ is _____.

Ans. 2

12. The value of $\frac{48S_2}{\pi^2}$ is _____.

Ans. 1.5

Section - 3

- This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

Paragraph

Let

$$M = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 \le r^2\},$$

where r>0. Consider the geometric progression $a_n=\frac{1}{2^{n-1}}$, n=1,2,3,.... Let $S_0=0$ and, for $n\geq 1$, let S_n denote the sum of the first n terms of this progression. For $n\geq 1$, let C_n denote the circle with center $(S_{n-1},0)$ and radius a_n , and a_n denote the circle with center $(S_{n-1},0)$ and radius a_n .

Consider M with $r = \frac{1025}{513}$. Let k be the number of all those circles C_n that are inside M. Let k be the maximum possible number of circles among these k circles such that no two circles intersect. Then

(A)k+2l=22

(B)2k+l=26

(C)2k+3l=34

(D)3k+2l=40

Ans. D

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

Motion[®] JEE ADVANCED 2021

ANSWER KEY

14. Consider M with $r = \frac{(2^{199} - 1)\sqrt{2}}{2^{198}}$. The number of all those circles D_n that are inside M is

Ans. B

Paragraph

Let $\psi_1:[0,\infty)\to\mathbb{R}$, $\psi_2:[0,\infty)\to\mathbb{R}$, $f:[0,\infty)\to\mathbb{R}$ and $g:[0,\infty)\to\mathbb{R}$ be functions such that f(0)=g(0)=0, $\psi_1(x)=e^{-x}+x,\ x\geq 0,$ $\psi_2(x)=x^2-2x-2e^{-x}+2,\ x\geq 0,$ $f(x)=\int_0^x (|t|-t^2)e^{-t^2}dt \quad x>0$

$$f(x) = \int_{-x}^{x} (|t| - t^2) e^{-t^2} dt, \ x > 0$$
$$g(x) = \int_{0}^{x^2} \sqrt{t} \ e^{-t} dt, \ x > 0.$$

and

15. Which of the following statements is TRUE?

(A)
$$f(\sqrt{\ln 3}) + g(\sqrt{\ln 3}) = \frac{1}{3}$$

(B)For every x>1, there exists an $\alpha \in (1,x)$ such that $\psi_1(x)=1+\alpha x$

(C)For every x>0, there exists a $\beta\in(0,x)$ such that $\psi_2(x)=2x(\psi_1(\beta)-1)$

(D) f is an increasing function on the interval $\left[0, \frac{3}{2}\right]$

Ans. C

16. Which of the following statements is TRUE?

 $(A)\psi_1(x) \le 1$, for all x > 0

(B) $ψ_2(x)$ ≤0, for all x>0

$$(C)f(x) \ge 1 - e^{-x^2} - \frac{2}{3}x^3 + \frac{2}{5}x^5$$
, for all $x \in \left(0, \frac{1}{2}\right)$

(D)
$$g(x) \le \frac{2}{3}x^3 - \frac{2}{5}x^5 + \frac{1}{7}x^7$$
, for all $x \in \left(0, \frac{1}{2}\right)$

Ans. D

SECTION 4

• This section contains THREE (03) questions.

• The answer to each question is a NON-NEGATIVE INTEGER.

• For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;

Zero Marks : 0 In all other cases.

17. A number is chosen at random from the set {1,2,3,...,2000}. Let p be the probability that the chosen number is a multiple of 3 or a multiple of 7. Then the value of 500p is ____ .

Ans. 214

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

MOTION® JEE ADVANCED 2021

ANSWER KEY

18. Let E be the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. For any three distinct points P,Q and Q' on E, let M(P, Q) be the mid-point of the line segment joining P and Q, and M(P, Q') be the mid-point of the line segment joining P and Q'. Then the maximum possible value of the distance between M(P, Q) and M(P, Q'), as P, Q and Q' vary on E, is ____.

Ans. 4

19. For any real number x, let [x] denote the largest integer less than or equal to x. If

$$I = \int\limits_0^{10} \left[\sqrt{\frac{10x}{x+1}} \, \right] dx \; \text{,} \label{eq:energy_spectrum}$$

then the value of 9I is _____.

Ans. 182

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

हो चुकी है ऑफलाइन क्लासरूम की शुरुआत अपने सपने को करो साकार, कोटा कोचिंग के साथ

Nitin Vijay (NV Sir) Managing Director Exp.: 18 yrs

Directors of Nucleus Education & Wizard of Mathematics Now Offline associated with Motion Kota Classroom

Akhilesh Kanther (AKK Sir) **Exp.** : 17 yrs

Vishal Joshi (VJ Sir) Exp.: 18 yrs

Surendra K. Mishra (SKM Sir) Exp.: 16 yrs

Gavesh Bhardwaj (GB Sir) **Exp.** : 17 yrs

Academic Pillars of JEE Motion Kota

Ram Ratan Dwivedi (RRD Sir) Joint Director Exp.: 20 yrs

Amit Verma (AV Sir) Joint Director Exp.: 16 yrs

Vijay Pratap Singh (VPS Sir) Vice President Exp.: 20 yrs

Nikhil Srivastava (NS Sir) Head JEE Academics Exp.: 17 yrs

Aatish Agarwal (AA Sir) Sr. Faculty Exp. : 17 yrs

Jayant Chittora (JC Sir) Sr. Faculty Exp. : 16 yrs

Anurag Garg (AG Sir) Sr. Faculty Exp.: 17 yrs

Arjun Gupta (Arjun Sir) Sr. Faculty Exp.: 14 yrs

Devki Nandan Pathak Avinash Kishore (DN Sir) Sr. Faculty Exp.: 13 yrs

(AVN Sir) Sr. Faculty Exp. : 9 yrs

Vipin Sharma (VS Sir) Sr. Faculty Exp.: 12 yrs

Durgesh Pandey (Pandey Sir) Sr. Faculty Exp.: 8 yrs

Join **English & Hindi Medium** DROPPER BATCH

Online + Offline Mode

Batch Starting from: 6th October 2021