ADVANCED ANSWER KEY

2021

CHEMISTRY Paper-2 QUESTION WITH SOLUTION

32700+ SELECTIONS

हो चुकी है ऑफलाइन क्लासरूम की शुरूआत अपने सपने को करो साकार, कोटा कोचिंग के साथ

Directors of Nucleus Education & Wizard of Mathematics

Now Offline associated with Motion Kota Classroom

(VJ Sir)

Exp. : 18 yrs

Exp. : 16 yrs

Gavesh Bhardwaj (GB Sir) Exp.: 17 yrs

Nitin Vijay (NV Sir) Managing Director Exp. : 18 yrs

Ram Ratan Dwivedi (RRD Sir) Joint Director Exp.: 20 yrs

Anurag Garg (AG Sir) Sr. Faculty Exp. : 17 yrs

Amit Verma (AV Sir) Joint Director Exp. : 16 yrs

Arjun Gupta

(Árjun Sir) Sr. Faculty

Exp. : 14 yrs

Akhilesh Kanther (AKK Sir)

Exp. : 17 yrs

Devki Nandan Pathak Avinash Kishore (DN Sir) Sr. Faculty Exp. : 13 yrs

Vipin Sharma (AVN Sir) Sr. Faculty (VS Sir) Sr. Faculty Exp.: 9 yrs Exp. : 12 yrs

Aatish Agarwal

(AA Sir) Sr. Faculty Exp. : 17 yrs

Jayant Chittora (JC Sir) Sr. Faculty Exp. : 16 yrs

Durgesh Pandey (Pandey Sir) Sr. Faculty Exp.: 8 yrs

Batch Starting from : 6th October 2021

Academic Pillars of JEE MOTION KOTA

ANSWER KEY

SECTION - A

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:
 - Full Marks : +4 If only (all) the correct option(s) is(are) chosen;
 - Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
 - Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
 - Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks : 0 If unanswered;

Negative Marks : -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
 - choosing ONLY (A), (B) and (D) will get +4 marks;
 - choosing ONLY (A) and (B) will get +2 marks;
 - choosing ONLY (A) and (D) will get +2marks;
 - choosing ONLY (B) and (D) will get +2 marks;
 - choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks.

SECTION - 1

1. The reaction sequence(s) that would lead to *o*-xylene as the major product is(are)

ANSWER KEY

Ans. AB

2. Correct option(s) for the following sequence of reactions is(are)

Ans. CD

Sol.

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE New batch Starting from : 6th October 2021

3. For the following reaction $2X + Y \xrightarrow{k} P$

the rate of reaction is $\frac{d[P]}{dt} k[X]$. Two moles of **X** are mixed with one mole of **Y** to make 1.0 L of solution. At 50 s, 0.5 mole of **Y** is left in the reaction mixture. The correct statement(s) about the reaction is(are) (Use: ln 2 = 0.693) (A) The rate constant, k, of the reaction is $13.86 \times 10^{-4} s^{-1}$

(B) Half-life of X is 50 s.

(C) At 50s,
$$-\frac{d[X]}{dt} = 13.86 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$$

(D) At 100s, $-\frac{d[Y]}{dt} = 3.46 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$.

Ans. BCD Sol.

 $2X + Y \xrightarrow{k} P \qquad -\frac{1}{2} \frac{dX}{dt} = \frac{-dY}{dt} = \frac{dP}{dt} = k[X]$ $2 \qquad 1$ $1 \qquad 0.5 \qquad \frac{-dX}{dt} = 2[X] = kd[X]$ $t_{\frac{1}{2}}(A) = 50s = \frac{0.693}{k_d} \Rightarrow k_d = \frac{0.693}{50}$ $kd = 1.386 \times 10^{-2}$ $\frac{dX}{dt} = 1.386 \times 10^{-2} \times [X] \qquad [X] = \frac{1}{1} = 1$ $= 1.386 \times 10^{-2}$ $at 100 \text{ sec} \Rightarrow t_{\frac{3}{4}} = 100 \text{ sec}$ $[X] = \frac{A0}{2^2} = \frac{2}{4} = 0.5$ $\frac{dY}{dt} = k \times [X] = \frac{1.386}{2} \times 0.5 = 3.46 \times 10^{-2}$

4. Some standard electrode potentials at 298 K are given below:

Pb ²⁺ / Pb	-0.13V
Ni ²⁺ / Ni	-0.24V
Cd^{2_+} / Cd	-0.40V
Fe ²⁺ / Fe	_0 44 V

To a solution containing 0.001 M of X^{2+} and 0.1 M of Y^{2+} , the metal rods X and Y are inserted (at 298 K) and connected by a conducting wire. This resulted in dissolution of X. The correct combination(s) of X and Y, respectively, is (are)

An Unmatched Experience of Offline

ANSWER KEY

Ans. ABC

5.

- **Sol.** $Pb^{+2} + 2e^{-} \longrightarrow Pb(s)$ $\begin{bmatrix} Ni^{+2} + 2e^{-} \longrightarrow Ni(s) & E^{\circ} = -0.13v \\ Cd^{2+} + 2e^{-} \longrightarrow Cd(s) & E^{\circ} = -0.24V \\ Fe^{+2} + 2e^{-} \longrightarrow Fe(s) & E^{\circ} = -0.4V \\ Fe^{+2} + 2e^{-} \longrightarrow Fe(s) & E^{\circ} = -0.44v \\ E = E^{\circ} - \frac{0.0591}{2} \log Q \\ -0.4 = -0.24 - \frac{0.0591}{2} \log Q \\ \end{bmatrix}$
 - The pair (s) of complexes wherein both exhibit tetrahedral geometry is (are) (Note: py = pyridine Given: Atomic numbers of Fe, Co, Ni and Cu are 26, 27, 28 and 29, respectively)
 - (A) $[FeCl_4]^-$ and $[Fe(CO)_4]^{2-}$ (B) $[CO(CO)_4]^-$ and $[COCl_4]^{2-}$
 - (C) $[Ni(CO)_{4}]$ and $[Ni(CN)_{4}]^{2-}$

(B) $\lfloor CO(CO)_4 \rfloor$ and $\lfloor COCl_4 \rfloor^2$ (D) $\lceil Cu(py)_4 \rceil^+$ and $\lceil Cu(CN)_4 \rceil^{3-1}$

- **A**, **B**, **D**
- Ans. A, B, D (1) $(FeCl_4)^- \longrightarrow$

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE New batch Starting from : 6th October 2021

Motion[®] JEE ADVANCED 2021

ANSWER KEY

- **6.** The correct statement(s) related to oxoacids of phosphorous is (are)
 - (A) Upon heating H_3PO_3 undergoes disproportionation reaction to produce H_3PO_4 and PH_3 .
 - (B) While H_3PO_3 can act as reducing agent, H_3PO_4 cannot.
 - (C) H_3PO_3 is a monobasic acid.
 - (D) The H atom of P–H bond in H_3PO_3 is not ionizable in water.

Ans. A, B, D

- (A) $H_3PO_3 \xrightarrow{disproportionation} H_3PO_4 + PH_3$
- (B) H_3PO_3 is reducing agent due to presence of P H bond
- (C) H_3PO_3 is dibasic acid due to presence of two –OH group
- (D) The H-atom of P–H bond is not Ionizable

Section – 2

ANSWER KEY

- This section contains THREE (03) question stems.
- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:
 Full Marks : +2 If ONLY the correct numerical value is entered at the designated place;
 Zero Marks : 0 In all other cases.

Question stem for Question Nos. 7 and 8

Question Stem

At 298 K, the limiting molar conductivity of a weak monobasic acid is 4×10^2 S cm² mol⁻¹. At 298 K, for an aqueous solution of the acid the degree of dissociation is α and the molar conductivity is $\mathbf{y} \times 10^2$ S cm² mol⁻¹. At 298 K, upon 20 times dilution with water, the molar conductivity of the solution becomes $3\mathbf{y} \times 10^2$ S cm² mol⁻¹.

7. The value of α is_____.

Ans. 0.22

8. The Value of y is _____.

Ans. 0.863

Sol. Λ^0_m (HA) = 4 × 10² Scm² / mol

 Λ^{C} HA = y × 10² Scm² / mol

$$\alpha = \frac{\Lambda^{\rm C}}{\Lambda^{\rm 0}}$$

When solution is diluted 20 times with water $\alpha_2 = 3\alpha_1$

$$k_{a} = \frac{C\alpha^{2}}{1-\alpha} = \frac{C}{20} \times \frac{(3\alpha)^{2}}{1-3\alpha}$$
$$\frac{1}{1-\alpha} = \frac{1}{20} \times \frac{9}{1-3\alpha}$$
$$\frac{1}{20-60\alpha} = 9-9\alpha$$
$$11 = (60-9)\alpha$$
$$\frac{11}{51} = \alpha = 0.22$$
$$\alpha = 0.22$$
$$\alpha = \frac{\Lambda^{c}}{\Lambda^{0}} = \frac{Y \times 10^{2}}{4 \times 10^{2}} = \frac{11}{51}$$
$$y = \frac{44}{51} = 0.863$$

An Unmatched Experience of Offline

New batch Starting from : 6th October 2021

KOTA CLASSROOM For JEE

Motion[®] JEE ADVANCED 2021

Question stem for Question Nos. 9 and 10

ANSWER KEY

Question Stem

Reaction of \mathbf{x} g of Sn with HCl quantitatively produced a salt. Entire amount of the salt reacted with \mathbf{y} g of nitrobenzene in the presence of required amount of HCl to produce 1.29 g of an organic salt (quantitatively).

(Use Molar masses (in g mol⁻¹) of H, C, N, O, Cl and Sn as 1, 12, 14, 16, 35 and 119, respectively).

9. The value of x is_____.

Ans. 3.57

- **10.** The value of y is _____.
- Ans. 1.23
- Sol. $Sn + 2HCI \longrightarrow SnCl_2 \longrightarrow x / 119mol$ NO₂ Sn/HCl

Question stem for Question Nos. 11 and 12

Question Stem

A sample (5.6 g) containing iron is completely dissolved in cold dilute HCl to prepare a 250 mL of solution. Titration of 25.0 mL of this solution requires 12.5 mLof 0.03 M KMnO₄ solution to reach the end point. Number of moles of Fe²⁺ present in 250 mL solution is $\mathbf{x} \times 10^{-2}$ (consider complete dissolution of FeCl₂). The amount of iron present in the sample is y% by weight.

(Assume: $KMnO_4$ reacts only with Fe^{2+} in the solution Use: Molar mass of iron as 56 g mol⁻¹)

An Unmatched Experience of Offline
KOTA CLASSROOM For JEE
New batch Starting from : 6th October 2021

ANSWER KEY

11. The value of x is _____.

Ans. 1.875

12. The value of y is _____.

Ans. 18.75

Sol. Fe + 2HCl \longrightarrow FeCl₂ + H₂ meq of KMnO₄ = meq of Fe⁺² 12.5 × 0.03 × 5 = 1.875 = meq of Fe⁺¹ in 25ml meq of Fe⁺² = m.moles of Fe⁺¹ in 250 ml = 18.75 moles = = 18.75 × 10⁻³ = x × 10⁻² wt = 18.75 × 10⁻³ × 56 = 1.05 gm x = 1.875 % of Fe⁺² = $\frac{1.05}{5.6}$ × 100 = 18.75

Section – 3

- This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks : -1 In all other cases.

Paragraph

The amount of enrgy required to break a bond is same as the amount energy released when the same bond is formed. In gaseous state, the energy required for homolytic cleavage of a bond is called Bond Dissociation Energy (BDE) or Bond Strength. BDE is affected by s-character of the bond and the stability of the radicals formd. Shorter bonds are typically stronger bonds. BDEs for some bonds are given below:

$$H_{3}C - H(g) \longrightarrow H_{3}C^{\bullet}(g) + H^{\bullet}(g) \quad \Delta H^{\circ} = 105 \text{ kcal mol}^{-1}$$

$$CI - CI(g) \longrightarrow CI^{\bullet}(g) + CI^{\bullet}(g) \quad \Delta H^{\circ} = 58 \text{ kcal mol}^{-1}$$

$$H_3C - CI(g) \longrightarrow H_3C^{\bullet}(g) + CI^{\bullet}(g) \Delta H^{\circ} = 85 \text{ kcal mol}^{-1}$$

$$H - Cl(g) \longrightarrow H(g) + Cl(g) \Delta H^{\circ} = 103 \text{ kcal mol}^{-1}$$

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE New batch Starting from : 6th October 2021

13. Correct match of the **C**-**H** bonds (shown in bold in Column **J** with their BDE in Column **K** is)

	Column J	Column K
	Molecule	BDE (kcal mol ⁻¹)
	(P) H -CH(CH ₃) ₂	(i) 132
	(Q) H –CH ₂ Ph	(ii) 110
	(R) \mathbf{H} -CH=CH ₂	(iii) 95
	(S) H −C ≡ CH	(iv) 88
	(A) P-iii, Q-iv, R-ii,	S-i
	(B) P-i, Q-ii, R-iii, S	-iv
	(C) P-iii, Q–ii, R–i, S	-iv
	(D) P-ii, Q–i, R–iv, S	iii
Ans.	D	
Sol.	$CH_3 - H \longrightarrow CH_3 +$	$\Delta H^{\circ} = 105 \text{ K Cal}$
	5	(A)
	1	
	B.D.E α stability of fr	reeradical
	$CH_{4} \longrightarrow CH_{2} + H$	$\Delta H^{\circ} = 105$
	$HCI \longrightarrow H+CI \qquad \Lambda$	H° = 103
	•	
	$CI + CH_4 \longrightarrow HCI +$	$CH_3 \qquad \Delta H^\circ = 105 - 103$
		= 2
		endothermic
	$\dot{C}H_3 + Cl_2 \longrightarrow CH_3$	CI + ĊI
	$\dot{C}H_3 + \dot{C}I \longrightarrow CH_3C$	$\Delta H^{\circ} = -85$
	Cl−Cl→2Ċl	$\Delta H^{o} = 58$
		<u> </u>
	$\dot{C}H_3 + Cl_2 \longrightarrow CH_3Q$	$CI + CI \qquad \Delta H^{\circ} = -27$
	a	exothermic
	final reaction	
	$CH_4 + Cl_2 \longrightarrow CH_3C$	CI + HCI
	$\Delta H^{o} = 105 + 5$	8-85-103
	= -25	
	CH ₂ > •	H_2 > $H_2 = CH_2 > C = CH_2$
		ĊH₃
	An Un	matched Experience of Offline
	Admission	A GLASSKUUM For JEE
0	New ba	tch Starting from · 6th October 2021

ANSWER KEY

ANSWER KEY

14. For the following reaction

 $CH_4(g) + CI_2(g) \xrightarrow{light} CH_3CI(g) + HCI(g)$

the correct statement is

- (A) Initiation step is exothermic with $\Delta H^{\circ} = -58 \text{ kcal mol}^{-1}$
- (B) Propagation step involving ${}^{\circ}CH_{3}$ formation is exothermic with $\Delta H^{\circ} = -2 \text{ kcal mol}^{-1}$
- (C) Propagation step involving CH_3CI formation is endothermic with $\Delta H^{\circ} = +27 \text{ kcal mol}^{-1}$
- (D) the recaiton is exothermic with $\Delta H^{\circ} = -25 \text{ kcal mol}^{-1}$

Ans. D

Sol. $H_3C - H \rightarrow H_3\dot{C} + \dot{H}_2 \Delta H^\circ = 105 \text{ kcal/mole}$

 $CI - CI \rightarrow CI + CI_{,} \Delta H^{\circ} = 58 \text{ kcal/mole}$ $H_{3}C - CI \rightarrow H_{3}C + CI_{,} \Delta H^{\circ} = 85 \text{ kcal/mole}$ $H - CI \rightarrow \dot{H} + \dot{C}I_{,} \Delta H^{\circ} = 103 \text{ kcal/mole}$ $CH_{4} + CI_{2} \rightarrow CH_{3} - CI + HCI$ **Step-I** Chain intiationstep

 $CI - CI \rightarrow 2CI$ (+58)

Step-II Chain propogation step

$$CH_3 - H + \dot{CI} \rightarrow H - CI + \dot{CH}_3$$

$$\vdots$$

 $CH_3 + CI - CI \rightarrow CH_3 - CI + CI$

Total energy gain = $105 + 58 = 163 \text{ kcal mol}^{-1}$ Total energy released = $103 + 85 = 188 \text{ kcal mol}^{-1}$

Paragraph

The reaction of $K_3[Fe(CN)_6]$ with freshly prepared $FeSO_4$ solution produces a dark blue precipitate called Turnbull's blue. Reaction of $K_4[Fe(CN)_6]$ with the $FeSO_4$ soluton in complete absence of air produces a white preipitate **X**, which turns blue in air. Mixing the $FeSO_4$ solution with NaNO₃, followed by a slow addition of concentrated H_2SO_4 through the side of the test tube produces a brown ring.

15. Precipitate **X** is

(A) $Fe_4[Fe(CN)_6]_3$ (B) $Fe[Fe(CN)_6]$ (C) $K_2Fe[Fe(CN)_6]$ (D) $KFe[Fe(CN)_6]$

Ans. C

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

New batch Starting from : 6th October 2021

ANSWER KEY

(B) $[Fe(NO)_{2}(H_{2}O)_{4}]^{3+}$ (A) $[Fe(NO)_{2}(SO_{4})_{2}]^{2-}$

- (D) $[Fe(NO)(H_2O)_5]^{2+}$ (C) $[Fe(NO)_4(SO_4)_2]$
- D Ans.

(3)

(1) K_3 [Fe(CN)₆] + FeSO₄ \longrightarrow Fe₃[Fe(CN)₂]₂

- Turnbull's blue
- (2) $K_4 [Fe(CN)_6] + FeSO_4 \longrightarrow K_3Fe[Fe(CN)_6]$

 $Fe_4[Fe(CN)_6]_3$ Or K Fe [Fe(CN)₆] Prussian blue $FeSO_4 + NaNO_3 + H_2SO_4 \longrightarrow [Fe(H_2O)_5NO]^{+2}$ Conc.

SECTION 4

- This section contains THREE (03) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme: Full Marks : +4 If ONLY the correct integer is entered; : 0 In all other cases. Zero Marks
- 17. One mole of an ideal gas at 900 K, undergoes two reversible processes, I followed by II, as shown below. If the work done by the gas in the two processes are same, the value of In $\frac{V_3}{V}$ is

 $2250 - - - - (p_1, V_1)$ $U_{R}(K)$ $450 - - (p_2, V_2) - (p_3, V_3)$ $C(1)(c^1 - c^1) + (c^1 - c^1)$

(U: internal energy, S: entropy, p:pressure, V: volume, R:gas constant) (Given: molar heat capacity at constant volume, $C_{v,m}$ of the gas is $\frac{5}{2}R$)

An Unmatched Experience of Offline

New batch Starting from : 6th October 2021

KOTA CLASSROOM For JEE

ANSWER KEY

Ans. 10

$$\begin{split} & \text{In a reversible adiabatic exp.} \\ & \frac{\Delta U}{R}(I) = 450 - 2250 = -1800 \\ & \Delta U = -1800 \text{R} \\ & \text{Process (II) is an Isothermal exp.} \\ & W_{(I)} = W_{(II)} \\ & nC_v(T_2 - T_1) = -nRT_2 ln \frac{V_3}{V_2} \\ & C_v(T_2 - T_1) = -RT_2 ln \frac{V_3}{V_2} \\ & W_{(I)} = \Delta U = -1800 \text{R} \\ & nC_v(T_2 - T_1) = -1800 \text{R} \\ & 1 \times \frac{5}{3} \text{R}(T_2 - 900) = -1800 \text{R} \\ & 1 \times \frac{5}{3} \text{R}(T_2 - 900) = -1800 \text{R} \\ & \frac{-3600}{5} = T_2 - 900 \\ & T_2 = 180 \text{K} \\ & -1800 \text{R} = -RT_2 ln \frac{V_3}{V_2} \\ & -1800 \text{R} = -180 ln \frac{V_3}{V_2} \end{split}$$

$$ln\frac{V_3}{V_2} = 10$$

18. Consider a helium (He) atom that absorbs a photon of wavelength 330 nm. The change in the velocity (in cm s⁻¹) of He atom after the photon absorption is _____. (Assume: Momentum is conserved when photon is absorbed.) Use: Planck consant = 6.6×10^{-34} Js, Avogadro number = 6×10^{23} mol⁻¹, Molar mass of He = 4gmol⁻¹)

Ans. 30

Sol. $\lambda = \frac{h}{m(\Delta v)}$ $\Delta v = \frac{h}{m\lambda} = \frac{6.6 \times 10^{-34} N_A}{4 \times 10^{-3} \times 330 \times 10^{-9}}$ = 0.3 m/sec = 30 Cm/sec

19. Ozonolysis of ClO₂ produces an oxide of chlorine. The average oxidation state of chlorine in this oxide is__.

ANSWER KEY

- Ans. 6
- **Sol.** CIO_2 contains an odd electron and is paramagnetic. It reacts with ozone to give O_2 and CI_2O_6 . $2CIO_2 + 2O_3 \longrightarrow CI_2O_6 + 2O_2$

In Cl_2O_6 , the average oxidation state of Cl is +6.

An Unmatched Experience of Offline

KOTA CLASSROOM For JEE

New batch Starting from : 6th October 2021

हो चुकी है ऑफलाइन क्लासरूम की शुरुआत अपने सपने को करो साकार, कोटा कोचिंग के साथ

Nitin Vijay (NV Sir) Managing Director Exp. : 18 yrs

Directors of Nucleus Education & Wizard of Mathematics

Now Offline associated with Motion Kota Classroom

Akhilesh Kanther (AKK Sir) Exp. : 17 yrs

Vishal Joshi Surendra K. Mishra (SKM Sir) Exp. : 18 yrs Exp. : 16 yrs

Gavesh Bhardwai (GB Sir) Exp. : 17 yrs

Academic Pillars of JEE Motion Kota

(VJ Sir)

Ram Ratan Dwivedi (RRD Sir) Joint Director Exp.: 20 yrs

Anurag Garg (AG Sir) Sr. Faculty Exp.: 17 yrs

Vijay Pratap Singh (VPS Sir) Vice President Exp. : 20 yrs

Nikhil Srivastava (NS Sir) Head JEE Academics Exp.: 17 yrs

Aatish Agarwal (AA Sir) Sr. Faculty Exp. : 17 yrs

Vipin Sharma

(VS Sir)

Jayant Chittora (JC Sir) Sr. Faculty Exp. : 16 yrs

Durgesh Pandey (Pandey Sir) Sr. Faculty Exp. : 8 yrs

Exp. : 16 yrs

Arjun Gupta (Arjun Sir) Sr. Faculty Exp. : 14 yrs

(AV Sir)

Joint Director

Devki Nandan Pathak Avinash Kishore (DN Sir) Sr. Faculty Exp. : 13 yrs

(AVN Sir) Sr. Faculty Exp. : 9 yrs

Join **English & Hindi Medium** DROPPER BATCH **Online + Offline Mode**

Batch Starting from : 6th October 2021