

Academic Pillars of JEE Motion Коta

Ram Ratan Dwivedi (RRD Sir) Joint Director Exp. : 20 yrs

Anurag Garg (AG Sir) Sr. Faculty
Exp. : 17 yrs

Amit Verma (AV Sir)
Joint Director
Exp. : 16 yrs

Arjun Gupta (Arjun Sir) Sr. Faculty
Exp. : 14 yrs

Vijay Pratap Singh (VPS Sir)
Vice President Exp. : 20 yrs

Devki Nandan Pathak
(DN Sir)
Sr. Faculty
Exp. : 13 yrs

Nikhil Srivastava (NS Sir)
Head JEE Academics Exp. : 17 yrs

Avinash Kishore
(AVN Sir)
Sr. Faculty
Exp. : 9 yrs

Aatish Agarwal (AA Sir) Sr. Faculty Exp. : 17 yrs

Vipin Sharma (VS Sir) Sr. Faculty
Exp. : 12 yrs

Jayant Chittora (JC Sir) Sr. Faculty Exp. : 16 yrs

Durgesh Pandey (Pandey Sir) Sr. Faculty Exp. : 8 yrs
Join

Batch Starting from : 6th October 2021

[^0]
SECTION - 1

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : - 1 In all other cases.
Q. 1 The major product formed in the following reaction is

(A)

(B)

(C)

(D)

Ans. B

Sol.

It is Birch reduction reactiobn,in which alkyne reduces into trans-Alkene.
Q. 2 Among the following, the conformation that corresponds to the most stable conformation of meso-butane-2,3-diol is
(A)

(B)

(C)

(D)

Ans. B

Sol.

meso-Butane-2,3-diol
It is stable by instramoleculer H -bonding.
Q. 3 For the given close packed structure of a salt made of cation X and anion Y shown below (ions of only one face are shown for clarity), the packing fraction is approximately (packing fraction $=\frac{\text { packing efficiency }}{100}$)

(A) 0.74
(B) 0.63
(C) 0.52
(D) 0.48

Ans. B
Sol. edge length $a=2 r_{y}$

$$
a \sqrt{2}=2\left(r_{x}+r_{y}\right)
$$

P.E. $=\frac{\left[\frac{4}{3} \times \pi r_{y}^{3}+3 \times \frac{4}{3} \pi r_{x}^{3}\right] \times 100}{a^{3}}$
P.E. $\geq 52 \%$ P.E. $<74 \% \Rightarrow$ P.E. $\simeq 63 \%$
p. $F=0.63$
Q. 4 The calculated spin only magnetic moments of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{CuF}_{6}\right]^{3-}$ in BM , respectively, are (Atomic numbers of Cr and Cu are 24 and 29, respectively)
(A) 3.87 and 2.84
(B) 4.90 and 1.73
(C) 3.87 and 1.73
(D) 4.90 and 2.84

Ans. A
Sol. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

$$
\mathrm{n}=3, \mu=\sqrt{15}=3.87 B M
$$

$$
\left(\mathrm{CuF}_{6}\right)^{3-}
$$

$$
\mathrm{n}=2, \mu=\sqrt{8}=2.84 B M
$$

Section - 2

- This section contains THREE (03) question stems.
- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+2$ If ONLY the correct numerical value is entered at the designated place; Zero Marks : 0 In all other cases.

Question Stem for Question Nos. 5 and 6

Question Stem

For the following reaction scheme, percentage yields are given along the arrow:

$x g$ and $y g$ are mass of R and U, respectively.
(Use: Molar mass (in $\mathrm{g} \mathrm{mol}^{-1}$) of H, C and O as 1,12 and 16 , respectively)
Q. 5 The value of x is \qquad -.
Ans. 1.62
Q. 6 The value of y is \qquad _.

Ans. 3.9

Sol. moles of propyne $=\frac{4}{40}=0.1$
moles of 2-butyne $=0.1 \times 0.75=0.075$

moles of $\mathrm{T}=\frac{0.1}{2} \times 0.8=0.04$
moles of $U=0.04 \times 0.8=0.032$
wt of $U=0.032 \times 122=3.9 \mathrm{gm}$

Question Stem for Question Nos. 7 and 8

Question Stem

For the reaction, $\mathbf{X}(s) \rightleftharpoons Y(s)+Z(g)$, the plot of $\ln \frac{\mathrm{p}_{\mathrm{Z}}}{\mathrm{p}^{\theta}}$ versus $\frac{10^{4}}{T}$ is given below (in solid line), where p_{z} is the pressure (in bar) of the gas Z at temperature T and $p^{\theta}=1$ bar.

(Given, $\frac{\mathrm{d}(\ln \mathrm{K})}{\mathrm{d}\left(\frac{1}{\mathrm{~T}}\right)}=-\frac{\Delta \mathrm{H}^{\ominus}}{\mathrm{R}}$, where the equilibrium constant, $K=\frac{\mathrm{p}_{\mathrm{z}}}{\mathrm{p}^{\ominus}}$ and the gas constant, $\mathrm{R}=$ $8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

Motion JeE ADVANCED 2021

Q. 7 The value of standard enthalpy, ΔH^{\ominus} (in $\mathrm{kJ} \mathrm{mol}^{-1}$) for the given reaction is \qquad .
Ans. 166.28
Sol. Ink $=\frac{-\Delta H}{R T}+\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}}$
Ink $=\frac{-\Delta H}{R T} \times \frac{10^{4}}{10^{4}}+\frac{\Delta S^{\circ}}{R}$
Slope $=\frac{-\Delta H}{R \times 10^{4}}=-\frac{4}{2} \Rightarrow \Delta H^{\circ}=2 R \times 10^{4}$
$\Delta H^{\circ}=2 \times 8.314 \times 10 \mathrm{kj} / \mathrm{mole}=166.28 \mathrm{kj} / \mathrm{mol}$
Q. 8 The value of $\Delta \mathrm{S}^{\theta}$ (in J K${ }^{-1} \mathrm{~mol}^{-1}$) for the given reaction, at 1000 K is \qquad .

Ans. 141.34

Sol. Put the value of Ink \& $\Delta \mathrm{H}^{\circ}$

$$
\begin{aligned}
& -3=\frac{-\Delta \mathrm{H}^{\circ}}{\mathrm{R} \times 10^{4}} \times 10+\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}} \\
& =-2 \times 10+\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}} \\
& \begin{aligned}
\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}}=17 \Rightarrow \Delta \mathrm{~S}^{\circ} & =17 \times \mathrm{R} \\
& =17 \times 8.314 \\
& =141.338 \mathrm{~J} / \mathrm{mol} \\
& =141.34 \mathrm{~J} / \mathrm{mol}
\end{aligned}
\end{aligned}
$$

Question Stem for Question Nos. 9 and 10

Question Stem

The boiling point of water in a 0.1 molal silver nitrate solution (solution A) is $x^{\circ} C$. To this solution A, an equal volume of 0.1 molal aqueous barium chloride solution is added to make a new solution B. The difference in the boiling points of water in the two solutions A and B is $y \times 10^{-2}{ }^{\circ} \mathrm{C}$.
(Assume: Densities of the solutions A and B are the same as that of water and the soluble salts dissociate completely.
Use: Molal elevation constant (Ebullioscopic Constant), $K_{b}=0.5 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$; Boiling point of pure water as $100^{\circ} \mathrm{C}$)
Q. 9 The value of x is \qquad .
Ans. 100.1
Sol. For solution $\mathrm{A}\left(\mathrm{AgNO}_{3}\right), i=2$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{k}_{\mathrm{b}} \times \mathrm{m}=2 \times 0.5 \times 0.1=0.1$
the B.P of solution A is $100+\Delta T_{b}$

$$
=100.1^{\circ} \mathrm{C}
$$

Q. 10 The value of $|y|$ is \qquad .
Ans. 2.5
$2 \mathrm{AgNo}_{3}+\mathrm{BaCl}_{2} \longrightarrow 2 \mathrm{AgCl}(\mathrm{s}) \downarrow+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
Sol.

$\Delta \mathrm{T}_{\mathrm{b}}=0.15 \times 0.5=0.075$
B.P. of solution $B=100.075$

Difference in B.P. of solution A \& solution B = 100.1-100.075

$$
\begin{aligned}
& =0.025 \\
& =2.5 \times 10^{-2}
\end{aligned}
$$

$Y=2.5$

Section - 3

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are
chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are
chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : O If unanswered;
Negative Marks : - 2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks.
Q. 11 Given:

The compound(S), which on reaction with HNO_{3} will give the product having degree of rotation $[\alpha]_{D}=-52.7^{\circ}$ is(are)
(A)

(B)

(C)

(D)

Ans. CD

Sol. (A)

(B)

(C)

(D)

Q. 12 The rection of \mathbf{Q} with PhSNa yields an organic compound (major product) that gives positive Carius test test on treatment with $\mathrm{Na}_{2} \mathrm{O}_{2}$ followed by addition of BaCl_{2}.
The correct option(s) for \mathbf{Q} is(are)
(A)

(B)

(C)

(D)

Ans. AD

Sol.

Q. 13 The correct statement(s) related to colloids is (are)
(A) The process of precipitating colloidal sol by an electrolyte is called peptization.
(B) Colloidal solution freezes at higher temperature than true solution at the same concentration.
(C) Surfactants form micelle above critical micelle concentration (CMC). CMC depends on temperature.
(D) Micelles are macromolecular colloids.

Ans. C
Sol. (A) False
Peptization is a method for the formation of Colloided solution By peptization precipitates are converted into colloidal solution.
(B) False

Concentration is same hence $\Delta \mathrm{T}_{\mathrm{f}}$ is also same hence freezing point is also same.
(C) Ture

CMC depend on temperature on ${ }^{\uparrow}$ temperature it will first decreases, micelles are formed only at above concentration called CMC
(D) False

Smaller particles aggregate to form micelles hence it is multimolecular.
Q. 14 An ideal gas undergoes a reversible isothermal expansion from state \mathbf{I} to state $\mathbf{I I}$ followed by a reversible adiabatic expansion from state II to state III. The correct plot(s) representing the changes from state \mathbf{I} to state III is(are) (p : pressure, V : volume, T : temperature, H : enthalpy, S: entropy)
(A) ${ }^{\mathrm{P}}$

(B)

(C)

(D)

Ans. ABD

Sol. I \rightarrow II \rightarrow reversible, isothermal expansion,
$\mathrm{T} \rightarrow$ constant, $\Delta \mathrm{V} \rightarrow+\mathrm{ve}, \Delta \mathrm{S} \rightarrow+\mathrm{ve} \Delta \mathrm{H} \Rightarrow 0$
II \rightarrow III \rightarrow Reversible, adiabatic expansion
$\mathrm{Q}=0, \Delta \mathrm{~V} \rightarrow+\mathrm{ve}, \Delta \mathrm{S} \rightarrow 0$
(A)

-ve slope - isothemal <adiabatic
$\mathrm{I} \rightarrow \mathrm{II} \rightarrow$ Isothermal
$\mathrm{II} \rightarrow \mathrm{III} \rightarrow$ Asdiab atic
(B)

$$
\begin{aligned}
& \mathrm{I} \rightarrow \mathrm{II} \rightarrow \mathrm{~T} \text { constant } \\
& \mathrm{II} \rightarrow \mathrm{III} \rightarrow \text { Adiab atic }
\end{aligned}
$$

(C)

$$
\begin{aligned}
& \mathrm{I} \rightarrow \mathrm{II} \rightarrow \Delta \mathrm{~S} \rightarrow+\mathrm{ve}, \Delta \mathrm{H} \Rightarrow 0 \\
& \mathrm{II} \rightarrow \mathrm{III} \rightarrow \Delta \mathrm{~S} \rightarrow 0, \Delta \mathrm{H} \rightarrow-\mathrm{ve}
\end{aligned}
$$

(D)

$$
\begin{aligned}
& \mathrm{I} \rightarrow \mathrm{II} \rightarrow \Delta \mathrm{~S} \rightarrow+\mathrm{ve}, \Delta \mathrm{~T}=0 \\
& \mathrm{I} \rightarrow \mathrm{III} \rightarrow \Delta \mathrm{~S} \rightarrow 0
\end{aligned}
$$

Q. 15 The correct statement(s) related to the metal extraction processes is(are)
(A) A mixture of PbS and PbO undergoes self-reduction to produce Pb and SO_{2}.
(B) In the extraction process of copper from copper pyrites, silica is added to produce copper silicate.
(C) Partial oxidation of sulphide ore of copper by roasting, followed by self-reduction produces blister copper.
(D) In cyanide process, zinc powder is utilized to precipitate gold from $\mathrm{Na}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$.

Ans. ACD

Sol. (A) $\mathrm{PbS}+2 \mathrm{PbO} \longrightarrow 3 \mathrm{~Pb}+\mathrm{SO}_{2}$ (Self reduction)
(B) $\mathrm{FeO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{FeSiO}_{3}$

Imp. Flux Slag
(C) $\mathrm{CuFeS}_{2} \longrightarrow \mathrm{Cu}_{2} \mathrm{~S}+\mathrm{Fes}$ (Roasting)
$\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{O}_{2} \longrightarrow \mathrm{Cu}_{2} \mathrm{O}+\mathrm{SO}_{2}$
$\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$ (Self reduction)
Blister copper
(D) $2 \mathrm{Na}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]+\mathrm{Zn} \longrightarrow \mathrm{Na}_{2}\left(\mathrm{Zn}(\mathrm{CN})_{4}\right)+2 \mathrm{Au}$
Q. 16 A mixture of two salts is used to prepare a solution S, which gives the following results:

The correct option(s) for the salt mixture is(are)
(A) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
(B) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$
(C) AgNO_{3} and $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$
(D) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$

Ans. AB

Sol.

$\mathrm{Ag}\left(\mathrm{NO}_{3}\right)$

SECTION 4

- This section contains THREE (03) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;
Zero Marks : 0 In all other cases.
Q. 17 The maximum number of possible isomers (including stereoisomers) which may be formed on mono-bromination of 1-methylcyclohex-1-ene using Br_{2} and UV light is \qquad .

Ans. 13

Sol.

Q. 18 In the reaction given below, the total number of atoms having sp^{2} hybridization in the major product P is \qquad .

Ans. 12

Q. 19 T he total number of possible isomers for $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$ is \qquad .
Ans. 6
Sol. $\quad\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}=2$ (cis and trans) [$\left.\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{ClBr}\right] \mathrm{ClBr}=2$ (cis and trans) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}_{2}=2$ (cis and trans)

Academic Pillars of JEE Моtion Коta

Ram Ratan Dwivedi (RRD Sir) Joint Director Exp. : 20 yrs

Anurag Garg (AG Sir) Sr. Faculty
Exp. : 17 yrs

Amit Verma (AV Sir) Joint Director Exp. : 16 yrs

Arjun Gupta (Arjun Sir) Sr. Faculty
Exp. : 14 yrs

Vijay Pratap Singh (VPS Sir)
Vice President Exp. : 20 yrs

Devki Nandan Pathak Avinash Kishore (DN Sir)
Sr. Faculty
Exp. : 13 yrs

Nikhil Srivastava (NS Sir)
Head JEE Academics Exp. : 17 yrs

(AVN Sir)
Sr. Faculty
Exp. : 9 yrs

Aatish Agarwal (AA Sir) Sr. Faculty Exp. : 17 yrs

Vipin Sharma (VS Sir) Sr. Faculty
Exp. : 12 yrs

Jayant Chittora (JC Sir) Sr. Faculty Exp. : 16 yrs

Durgesh Pandey (Pandey Sir) Sr. Faculty Exp. : 8 yrs

Batch Starting from : 6th October 2021

[^0]: Online + Offline Mode

