

IIT/NIT | NEET / AIIMS | NTSE / IJSO / OLYMPIADS

कोटा का रिपिटर्स (12th पास) का सर्वश्रेष्ठ रिजल्ट देने वाला संस्थान

AIR Sarthak Behera

AIR 120 Pankaj

146 Goval

AIR 148 Mukul Kumar

Total Selection 709/2084 = **34.02%**

JEE MAIN 2019 RESULT

AIR 79 Shiv Kumar Modi

AIR 85 Anuj Chaudhary

AIR Shubham

AIR Feshaan

Students Qualified for JEE ADVANCED 2288/3316 = **68.99%**

Toll Free: 1800-212-1799

H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in | : info@motion.ac.in

CRITERIA FOR DIRECT ADMISSION IN STAR BATCHES

V STAR BATCH XII Pass (JEE M+A)

ELIGIBILITY

JEE Main'19 %tile > 98%tile

JEE Advanced'19 Rank (Gen.) < 15,000

P STAR BATCH XI Moving (JEE M+A)

NTSE Stage-1 Qualified or NTSE Score > 160

ELIGIBILITY

100 marks in Science or Maths in Board Exam J STAR BATCH XII Pass (NEET/AIIMS)

ELIGIBILITY

NEET'19 Score > 450 Marks

AIIMS'19 %tile > 98%tile

H STAR BATCH
XI Moving (NEET/AIIMS)

NTSE Stage-1 Qualified or NTSE Score > 160

100 marks in Science or Maths in Board Exam

Scholarship Criteria

JEE Main Percentile	SCHOLARSHIP+ STIPEND	JEE Advanced Rank	SCHOLARSHIP+ STIPEND	
98 - 99	100%	10000-20000	100%	
Above 99	100% + ₹ 5000/ month	Under 10000	100% + ₹ 5000/ month	
NEET 2019 Marks	SCHOLARSHIP+ STIPEND	NTSE STAGE-1 2019 Marks	SCHOLARSHIP+ STIPEND	
450	100%	160-170	100% + ₹ 2000/ month	
530-550	100% + ₹ 2000/ month	171-180	100% + ₹ 4000/month	
550-560	100% + ₹ 4000/month	171-100	100% + C 4000/111011til1	
560	100% + ₹ 5000/month	180+	100% + ₹ 5000/month	

FEATURES:

- Batch will be taught by NV Sir & HOD's Only.
- Weekly Quizes apart from regular test.
- Under direct guidance of NV Sir.
- Residential campus facility available.
- 20 CBT (Computer Based Test) for better practice.
- Permanent academic coordinator for personal academic requirement.
- Small batch with only selected student.
- All the top brands material will be discussed.

MATHS [JEE ADVANCED - 2019] PAPER - 2

SECTION-1 (Maximum marks :32)

- This section contains EIGHT (08) questions.
- Each question has FOUR options ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme.

Full marks : +4 If only (all) the correct option(s) is (are) chosen;

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen

and both of which are correct

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen

and it is a correct option.

Zero Marks : 0 If two or more options is chosen (i.e. the question is unanswered)

Negative Marks : -1 in all other cases

• For example, in a question, if (A),(B) and (D) are the ONLY three options corresponding to correct answer, then

choosing ONLY (A), (B) and (D) will get +4 marks

choosing ONLY (A) and (B) will get +2 marks

choosing ONLY (A) and (D) will get +2 marks

choosing ONLY (B) and (D) will get +2 marks

choosing ONLY (A) will get +1 mark

choosing ONLY (B) will get +1 mark

choosing ONLY (D) will get +1 mark

choosing no option (i.e., the question is unanswered) will get 0 marks; and

choosing any other combination of options will get -1 mark

1. Three lines

$$L_1 : \vec{r} = \lambda \hat{i} \quad \lambda \in R$$

$$L_2 : \vec{r} = \hat{k} + \mu \hat{i}, \mu \in R$$

$$L_3: \vec{r} = \hat{i} + \hat{j} + \nu \hat{k}, \ \nu \in R$$

are given. For which point(s) Q on L_2 can we find a point P on L_1 and a point R on L_3 so that P,Q and R are collinear?

(1)
$$\hat{k} + \hat{j}$$

(2)
$$\hat{k} - \frac{1}{2}\hat{j}$$

(4)
$$\hat{k} + \frac{1}{2}\hat{j}$$

Ans. 2,4

$$L_1 \rightarrow \overline{r} = \lambda \hat{i} \Rightarrow \frac{x-0}{\lambda} = \frac{y-0}{0} = \frac{z-0}{0}$$

$$L_2 \rightarrow \overline{r} = \hat{k} + \mu \hat{j} \Rightarrow \frac{x - 0}{0} = \frac{y - 0}{\mu} = \frac{z - 1}{0}$$

$$L_3 \rightarrow \overline{r} = \hat{i} + \hat{j} + v\hat{k} \Rightarrow \frac{x-1}{0} = \frac{y-1}{0} = \frac{z-1}{v}$$

Point P on L₁ $P = (\lambda, 0, 0)$

Point Q on L_2 $Q \equiv (0, \mu, 1)$

Point R on L_3 R R = (1, 1, v)

P,Q,R an collinear

 $\vec{PQ} = \vec{QR}$

$$\frac{-\lambda}{1} = \frac{\mu}{1-\mu} = \frac{1}{\nu-1} = k$$

$$\lambda = -k$$

$$\frac{\mu}{1-\mu}=k$$

$$\mu = k - k\mu$$

$$\mu(1 + k) = k$$

$$\mu = \frac{k}{k+1}$$

$$\frac{1}{\nu-1}=k$$

$$\Rightarrow$$
 1 = kv - k

$$\frac{1+k}{k}=\nu$$

$$\therefore \ \mu = \frac{-\lambda}{1-\lambda} \ = \ \frac{1}{\nu}$$

 μ cannot take value 0 & 1

2. Let $f: R \rightarrow R$ be given by f(x) = (x-1)(x-2)(x-5). Define

$$F(x) = \int_{0}^{x} f(t)dt, x > 0$$

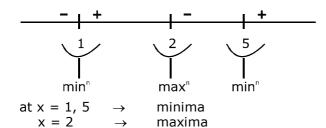
Then which of the following options is/are correct?

- (1) F has two local maxima and one local minimum in $(0, \infty)$
- (2) F has a local maximum at x = 2
- (3) $F(x) \neq 0$ for all $x \in (0,5)$
- (4) F has a local minimum at x = 1

Sol. 2, 4, 3

$$F'(x) = f(x)$$

$$F'(x) = (x-1)(x-2)(x-5)$$



Now

$$F'(x) = x^3 - x^2 + 17x - 10$$
Integrate

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

H.O.: 394, Rajeev Gandhi Nagar, Kota
Toll Free: 1800-212-1799
www.motion.ac.in | implementation.ac.in

$$F(x) = \frac{x^4}{4} - \frac{8}{3}x^3 + \frac{17}{2}x^2 - 10x + C$$

$$F(0) = 0 \Rightarrow C = 0$$

$$F(x) = \frac{x^4}{4} - \frac{8}{3}x^3 + \frac{17}{2}x^2 - 10x$$

For
$$x \in (0, 5) \Rightarrow F(x) \neq 0$$

3. Let $f: R \to R$ be a function We say that f has

PROPERTY 1 if
$$_{h\to 0}^{lim}\frac{f(h)-f(0)}{\sqrt{|h|}}$$
 exists and is finite, and

PROPERTY 2 if
$$\lim_{h\to 0} \frac{f(h)-f(0)}{h^2}$$
 exists and is finite.

Then which of the following options is/are correct?

- (1) f(x) = |x| has PROPERTY 1
- (2) f(x) = x|x| has PROPERTY 2
- (3) $f(x) = x^{2/3}$ has PROPERTY 1
- (4) $f(x) = \sin x$ has PROPERTY 2

Sol. 1,3

(a)
$$f(x) = |x|$$

Property I
$$\lim_{h\to 0} \frac{|h|-0}{\sqrt{|h|}} \Rightarrow \lim_{n\to 0} \sqrt{|h|} = 0$$

Property II
$$\lim_{h\to 0} \frac{|h|-0}{h^2} \Rightarrow \lim_{h\to 0} 1/h \to \infty$$
 (Not Satisfies)

(b)
$$f(x) = x |x|$$

property I
$$\lim_{h\to 0} \frac{h|h|-0}{\sqrt{|h|}} = 0$$

Property II
$$\lim_{h\to 0} \frac{h|h|-0}{h^2} \to \text{does not exist}$$

(c)
$$f(x) = x^{2/3}$$

Property I
$$\lim_{h\to 0} \frac{h^{2/3}-0}{\sqrt{|h|}}$$

$$h \to 0^+$$
 $\lim_{h \to 0} t \frac{h^{2/3}}{h^{1/2}} = 0$

$$h \to 0^ \lim_{h \to 0} it \frac{h^{2/3}}{-h^{1/2}} = 0$$

Property II
$$\lim_{h\to 0} \frac{h^{2/3}}{h^{1/2}} \to \infty$$

(d)
$$f(x) = \sin x$$

property 2
$$\lim_{h\to 0} \frac{\sinh - 0}{h^2} \to \infty$$

4. For non-negative integers n, let

$$f(n) = \frac{\displaystyle\sum_{k=0}^{n} sin\bigg(\frac{k+1}{n+2}\,\pi\bigg) sin\bigg(\frac{k+2}{n+2}\,\pi\bigg)}{\displaystyle\sum_{k=0}^{n} sin^2\bigg(\frac{k+1}{n+2}\,\pi\bigg)}$$

Assuming $\cos^{-1}x$ takes values in $[0,\pi]$, which of the following options is/are correct ?

- (1) $\sin(7\cos^{-1} f(5)) = 0$
- (2) If $\alpha = \tan(\cos^{-1} f(6))$, then $\alpha^2 + 2\alpha 1 = 0$

(3)
$$\lim_{n\to 0} f(n) = \frac{1}{2}$$

(4)
$$f(4) = \frac{\sqrt{3}}{2}$$

Sol. 1,2,4

$$f(n) = \frac{\sum\limits_{K=0}^{n} cos \left[\left(\frac{K+1}{n+2} \right) - \left(\frac{K+2}{n+2} \right) \pi \right] - cos \left[\left(\frac{K+1}{n+2} + \frac{K+2}{n+2} \right) \pi \right]}{\sum\limits_{K=0}^{n} 2 sin^2 \left(\frac{K+1}{n+2} \right) \pi}$$

$$= \frac{\sum\limits_{K=0}^{n} \left[\left(\cos \frac{\pi}{n+2} \right) - \cos \left(\frac{2K+3}{n+2} \right) \pi \right]}{\sum\limits_{K=0}^{n} \left[1 - \cos 2 \left(\frac{K+1}{n+2} \right) \pi \right]}$$

$$=\frac{\left(cos\left(\frac{\pi}{n+2}\right)\right)\!\left(n+1\right)\!-\!\left[cos\left(\frac{3\pi}{n+2}\right)\!+cos\left(\frac{5\pi}{n+2}\right)\!+...+cos\!\left(\frac{2n+3}{n+2}\right)\!\pi\right]}{\left(n+1\right)\!-\!\sum\limits_{K=0}^{n}cos2\!\left(\frac{K+1}{n+2}\right)\!\pi}$$

$$=\frac{\left(\cos\left(\frac{\pi}{n+2}\right)\right)(n+1)-\frac{\sin(n+1)\frac{\pi}{n+2}}{\sin\left(\frac{\pi}{n+2}\right)}\cos\left[\left(\frac{n+3}{n+2}\right)\pi\right]}{\left(n+1\right)-\frac{\sin\left((n+1)\frac{\pi}{n+2}\right)}{\sin\left(\frac{\pi}{n+2}\right)}.(\cos\pi)}$$

$$=\frac{\left(\cos\left(\frac{\pi}{n+2}\right)\right)(n+1)+\cos\left(\frac{\pi}{n+2}\right)}{n+2}$$

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

H.O.: 394, Rajeev Gandhi Nagar, Kota
Toll Free: 1800-212-1799
www.motion.ac.in : info@motion.ac.in

$$f(n) = \frac{\cos\left(\frac{\pi}{n+2}\right)(n+2)}{(n+2)}$$

$$F(n) = \cos\left(\frac{\pi}{n+2}\right)$$

(a)
$$f(5) = \cos\left(\frac{\pi}{7}\right)$$

$$\sin\left(7\frac{\pi}{7}\right) = 0$$

(b)
$$\alpha = \tan[\cos^{-1}(\cos \pi/8)]$$

$$= \tan \frac{\pi}{8}$$

$$\alpha = \sqrt{2} - 1$$

$$\alpha = \sqrt{2} - 1$$
Then $\alpha^2 + 2\alpha - 1 = 0$

(c)
$$\lim_{n\to\infty}\cos\left(\frac{\pi}{n+2}\right) = 1$$

(d)
$$f(4) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

5. Let $x \in R$ and let

$$P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}, \qquad Q = \begin{bmatrix} 2 & x & x \\ 0 & 4 & 0 \\ x & x & 6 \end{bmatrix} \text{ and } R = PQP^{-1}.$$

Then which of the following options is/are correct?

(1) For x = 0, if R
$$\begin{bmatrix} 1 \\ a \\ b \end{bmatrix} = 6 \begin{bmatrix} 1 \\ a \\ b \end{bmatrix}$$
, then a+b = 5

(2) There exists a real number x such that PQ = QP

(3) For x = 1, there exists a unit vector
$$\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$$
 for which R $\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

(4) det R = det
$$\begin{bmatrix} 2 & x & x \\ 0 & 4 & 0 \\ x & x & 5 \end{bmatrix} + 8$$
, for all $x \in R$

Sol. RP = PO

det(R) det(P) = (det P) (dep Q)
(det R) (6) = (6) (12 -
$$x^2$$
) (4)
det R = 48 - $4x^2$ — optioin D correct

Now P-1 =
$$\frac{1}{6}\begin{bmatrix} 6 & -3 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 2 \end{bmatrix}$$

$$R = PQP^{-1}$$

$$R = \frac{1}{6} \begin{bmatrix} 6x + 12 & 3x + 6 & 4 - 10x \\ 12x & 24 & 8 - 4x \\ 18x & 0 & 36 - 6x \end{bmatrix}$$

Option
$$I \rightarrow x = 0$$

$$R = \frac{1}{6} \begin{bmatrix} 12 & 6 & 4 \\ 0 & 24 & 8 \\ 0 & 0 & 36 \end{bmatrix}$$

$$= \frac{1}{6} \begin{bmatrix} 2 & 1 & 2/3 \\ 0 & 4 & 4/3 \\ 0 & 0 & 6 \end{bmatrix}$$

$$\Rightarrow R \begin{bmatrix} 1 \\ a \\ b \end{bmatrix} = 6 \begin{bmatrix} 1 \\ a \\ b \end{bmatrix} \Rightarrow \begin{bmatrix} 2 + a + \frac{2}{3}b \\ 4a + \frac{4}{3}b \\ 6b \end{bmatrix} = \begin{bmatrix} 6 \\ 6a \\ 6b \end{bmatrix}$$

$$a + \frac{2}{3}b = 4$$
, $\frac{4}{3} - b = 2a \Rightarrow a = 2$, $b = 3$

$$a + b = 5$$

Option (b) PQ = QP Not possible

Option (c)
$$x = 1$$

$$R = \frac{1}{6} \begin{bmatrix} 18 & 9 & -6 \\ 12 & 24 & 4 \\ 18 & 0 & 30 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 3/2 & -1 \\ 2 & 4 & 2/3 \\ 3 & 0 & 5 \end{bmatrix}$$

$$R\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$3\alpha + \frac{3}{2}\beta - \gamma = 0$$
$$2\alpha + 4\beta + \frac{2}{3}\gamma = 0$$
$$3\alpha + 5\gamma = 0$$

$$\gamma = \frac{-3\alpha}{5}$$
, $\beta = \frac{-2\alpha}{5}$

$$\alpha + \beta + \gamma = 0$$

$$\alpha$$
, $\frac{-2\alpha}{5}$, $\frac{-3\alpha}{5}$

6. Let
$$f(x) = \frac{\sin \pi x}{x^2}$$
, $x > 0$.

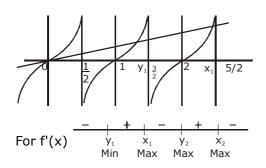
Let $x_1 < x_2 < x_3 < \ldots < x_n < \ldots$ be all the points of local maximum of f and $y_1 < y_2 < y_3 < \ldots < y_n < \ldots$ be all the points of local minimum of f. Then which of the following options is/are correct? $(1) x_1 < y_1$

$$(2)x_n \in \left(2n, 2n + \frac{1}{2}\right)$$
 for every n

- (3) $|x_n y_n| > 1$ for every n
- (4) $x_{n+1} x_n > 2$ for every n **1,3,4**

Sol.

$$f'(x) = \frac{2x \cos \pi x \left(\frac{\pi x}{2} - \tan \pi x\right)}{x^4}$$



$$\textbf{7.} \qquad \text{Let } p_1 = 1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad \quad p_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \qquad \quad p_3 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$p_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$p_3 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$p_4 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \qquad p_5 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \qquad p_6 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix},$$

$$p_5 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$

$$p_6 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

and
$$X = \sum_{k=1}^{6} P_k \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix} P_k^T$$

Where P_K^T denotes the transpose of the matrix P_K . Then which of the following options is/are

(1) The sum of diagonal entries of X is 18

(2) If
$$X\begin{bmatrix} 1\\1\\1 \end{bmatrix} = \alpha \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, then $\alpha = 30$

- (3) X is a symmetric matrix
- (4) X 30I is an invertible matrix

Sol.

Clearly
$$P_1 = P_1^T = P_1^{-1}$$

 $P_2 = P_2^T = P_2^{-1}$

$$P_6 = P_6^T = P_6^{-1}$$

and
$$A^1 = A$$
, where $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix}$

Using formula $(A+B)^1 = A^1+B^1$

$$X^1 = \left(P_1AP_1^\mathsf{T} + \ldots \ldots P_6AP_2^\mathsf{T}\right)^\mathsf{T} + \ldots P_6A^\mathsf{T}P_6^\mathsf{T} = x \qquad \Rightarrow x \text{ is symmetric}$$

Let B =
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$XB = P_1AP_1TB + P_2AP_2^TB + \dots + P_6APT_6B = P_1AB + PAB + \dots + P_6AB$$

$$XB = (P_1 + P_2 + \dots P_6) \begin{bmatrix} 6 \\ 3 \\ 6 \end{bmatrix}$$

$$= \begin{bmatrix} 6 \times 2 + 3 \times 2 + 6 \times 2 \\ 6 \times 2 + 3 \times 2 + 6 \times 2 \\ 6 \times 2 + 3 \times 2 + 6 \times 2 \end{bmatrix} = \begin{bmatrix} 30 \\ 30 \\ 30 \end{bmatrix} = 300 \implies \alpha = 30$$

Since
$$x \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 30 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow (x-301)B = 0 \text{ has a non trivial solution } B = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

$$\Rightarrow |x - 30| = 0
x = P_1 A P_1^T + \dots + P_6 A P_6^T
traco (x) = t_1 (P_1 A P_1^T) + \dots (P_6 P_6^T) = (2+0+1) + \dots + (2+0+1) = 3 \times 6 = 18$$

8. For For $a \in R|a| > 1$, let

$$\lim_{n\to\infty} \left(\frac{1+\sqrt[3]{2}+\ldots+\sqrt[3]{n}}{n^{7/3} \left(\frac{1}{(an+1)^2} + \frac{1}{(an+2)^2} + \ldots + \frac{1}{(an+n)^2} \right) } \right) = 54.$$

Then the possible value(s) of a is/are

$$(2) -6 (3) 8$$

$$\lim_{n \to \infty} \frac{1^{\frac{1}{3}} + 2^{\frac{1}{3}} + \dots + n^{\frac{1}{3}}}{\frac{1}{n^2} \left[\frac{1}{\left(a + \frac{1}{n}\right)^2} + \frac{1}{\left(a + \frac{2}{n}\right)^2} + \dots + \frac{1}{\left(a + \frac{n}{n}\right)^2} \right]}$$

$$\lim_{n \to \infty} \frac{\frac{1}{n} \sum_{r=1}^{n} \left(\frac{r}{n}\right)^{\frac{1}{3}}}{\frac{1}{n} \sum_{r=1}^{n} \left(\frac{1}{a + \frac{r}{n}}\right)^{2}} \Rightarrow \int_{0}^{1} \frac{1}{x^{\frac{1}{3}}} dx \Rightarrow \frac{\frac{3}{4} \left(x^{\frac{4}{3}}\right)^{1}}{-\left(\frac{1}{a + x}\right)^{1}} = 54$$

$$\Rightarrow \frac{\frac{3}{4}}{\left(\frac{1}{a+1} - \frac{1}{a}\right)} = 54 \Rightarrow \frac{3}{4}a(a+1) = 54$$

$$a^2 + a - 72 = 0 \Rightarrow a = -9.8$$

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

H.O.: 394, Rajeev Gandhi Nagar, Kota
Toll Free: 1800-212-1799
www.motion.ac.in | implementation.ac.in

Section 2

- This section contains SIX (06) qeustions. The answer to each question is a NUMERICAL
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal
- Answer to each question will be evaluated according to the following marking scheme;

Full Marks : +3 If ONLY the correct numerical value is entered

Zero Marks : 0 in all other cases.

- Let $\vec{a} = 2\hat{i} + \hat{j} \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ be two vectors. Consider a vector $\vec{c} = \alpha \vec{a} + \beta \vec{b}$. $\alpha, \beta, \in \square$. If the 1. projection of \vec{c} on the vector $(\vec{a} + \vec{b})$ is $3\sqrt{2}$, then the minimum value of $(\vec{c} - (\vec{a} \times \vec{b})) \cdot \vec{c}$ equals__ **18**
- Sol.

$$\frac{\overline{C}.\left[\overline{a}+\overline{b}\right]}{\left|\overline{a}+\overline{b}\right|} = 3\sqrt{2}$$

$$\overline{C} = \alpha(2,1,-1)+\beta(1,2,1)$$

= (2
$$\alpha$$
+ β , α +2 β , $-\alpha$ + β)

$$\frac{\overline{C}-\overline{a}+\overline{c}-\overline{b}}{\left|\overline{a}+\overline{b}\right|}=3\sqrt{2}$$

$$\overline{\mathsf{C}}$$
 . $\overline{\mathsf{a}}$ =2(2 α + β) + α +2 β + α - β = 6 α + 3 β

$$\frac{(6\alpha+3\beta)+(6\beta+3\alpha)}{3\sqrt{2}}=3\sqrt{2}$$

$$\overline{c} \cdot \overline{b} = 2\alpha + \beta + 2\alpha + 4\beta + \alpha + \beta = 6\beta + 3\alpha$$

$$(\alpha + \beta) = 2$$

$$|\bar{a} + \bar{b}|^2 = 6 + 6 + 23$$

$$\left| \overline{a} + \overline{b} \right| = \sqrt{18} = 3\sqrt{2}$$

Now
$$(\bar{c} - (\bar{a} \times \bar{b})).\bar{c} = |\bar{c}|^2 - [\bar{a} \ \bar{b} \ \bar{c}]$$
 $\therefore [\bar{a} \ \bar{b} \ \bar{c}] = 0$

$$\cdot \cdot \cdot \left[\overline{a} \ \overline{b} \ \overline{c} \right] = 0$$

=
$$(2\alpha+\beta)^2 + (\alpha+2\beta)^2+(-\alpha+\beta)^2$$

$$= 6\alpha^2 + 6\beta^2 + 6\alpha\beta = 6(\alpha^2 + \beta^2 + \alpha\beta)$$

For minimum value $= \alpha = \beta = 1$

we get minimum value = 18

H.O.: 394, Rajeev Gandhi Nagar, Kota Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx Toll Free: 1800-212-1799 www.motion.ac.in S: info@motion.ac.in

2. Suppose

$$\det \begin{bmatrix} \sum_{k=0}^{n} k & \sum_{k=0}^{n} {}^{n}C_{k}k^{2} \\ \sum_{k=0}^{n} {}^{n}C_{k}k & \sum_{k=0}^{n} {}^{n}C_{k}3^{k} \end{bmatrix} = 0$$

holds for some positive integer n. Then $\sum_{k=0}^{n} \frac{{}^{n}C_{k}}{k+1}$ equals_____

Sol. 6.2

$$\begin{split} \sum_{k=0}^{n} \left(k^2 - k + k\right)^n G_c &= \sum_{k=0}^{n} \left(k - 1\right) k \; \frac{n}{k} \cdot \frac{n-1}{k-1} \; {}^{_{n-2}} G_{_{c-2}} + \; \sum_{r=0}^{n} k \; \frac{n}{k} \, {}^{_{n-1}} C_{_{k-1}} \\ &= \; n(n-1). \; \; 2^{n-2} \; + \; n \; \; 2^{n-1} \\ &= \; n.2^{n-2} \; \left[(n-1) + 2 \right] \\ &= \; n(n+1) \; \; 2^{n-2} \end{split}$$

$$\sum_{k=0}^{n} k \frac{n}{k}^{n-1} C_{n-1} = n2^{n-1}$$

$$\sum_{k=0}^{n} 3k^{n-1}C_{n-1} = {}^{n}C_{o} + 3{}^{1}({}^{n}C_{1}) + (3{}^{2}) n_{e} + \dots + 3{}^{n} ({}^{n}C_{n})$$

Now
$$\begin{vmatrix} \frac{n(n+1)}{2} & n(n+1)2^{n-2} \\ n2^{n-1} & 4^n \end{vmatrix} = 0$$

$$\begin{vmatrix} 2 & 2^n \\ n2^{n-1} & 4^n \end{vmatrix} = 0 \ 2^{2n+1} = n. \ 2^{2n-1}$$

$$\sum_{k=0}^{4} \frac{{}^{4}C_{1c}}{k+1} = \frac{{}^{4}C_{0}}{1} + \frac{{}^{4}C_{1}}{2} + \frac{{}^{4}C_{2}}{3} + \frac{{}^{4}C_{3}}{4} + \frac{{}^{4}C_{4}}{5}$$

$$= 1+2+2+1+1/5$$

$$=\frac{31}{5}$$

$$= 6.20$$

3. Let |X| denote the number of elements in a set X, Let $S = \{1,2,3,4,5,6\}$ be a sample space, where each element is equally likely to occur. If A and B are independent events associated with S, then the number of ordered pairs (A,B) such that $1 \le |B| < |A|$, equals_____

Sol. 422

Let No. of element in A =
$$\alpha$$
 $\alpha > \beta \ge 1$ No. of element in B = β & No. of elemens in A \cap B = Z

· A & B are independent events

then
$$P(A \cap B) = P(A)$$
. $P(B)$

$$\frac{z}{6} = \frac{\alpha}{6} \cdot \frac{\beta}{6} \Rightarrow 6z = \alpha.\beta$$

Now Case I : if
$$z = 1$$

(i)
$$\alpha = 6$$
, $\beta = 1 \Rightarrow {}^{6}C_{6}$. ${}^{6}C_{1} = 6$

Now Case I : if z = 1
(i)
$$\alpha$$
 = 6, β = 1 \Rightarrow ${}^{6}C_{6}$. ${}^{6}C_{1}$ = 6
(ii) α = 3, β = 2 \Rightarrow ${}^{6}C_{3}$. ${}^{3}C_{1}$. ${}^{3}C_{1}$ = 180

Case II: if
$$z = 2$$

(i)
$$\alpha = 6$$
, $\beta = 2 \Rightarrow {}^{6}C_{5}$. ${}^{6}C_{2} = 1.15 = 15$

Case II : if z = 2
 (i)
$$\alpha$$
 = 6, β = 2 \Rightarrow 6C_5 . 6C_2 = 1.15 = 15
 (ii) α = 4, β = 3 \Rightarrow 6C_4 . 3C_2 . 2C_1 = 180

Case III: if
$$z = 3$$

Case III : if z = 3 (i)
$$\alpha$$
 = 6, β = 3 \Rightarrow 6C_6 . 6C_3 = 1.20 = 20

Case IV: if
$$z = 4$$

Case IV : if z = 4 (i)
$$\alpha$$
 = 6, β = 4 \Rightarrow 6C_6 . 6C_4 = 1.15 = 15

Case
$$V$$
: if $z = 5$

Case V : if z = 5 (i)
$$\alpha$$
 = 6, β = 5 \Rightarrow ${}^{6}C_{_{6}}$. ${}^{6}C_{_{5}}$ = 1.6 = 6

4. The value of the integral

$$\int\limits_{0}^{\pi/2} \frac{3\sqrt{\cos\theta}}{(\sqrt{\cos\theta}+\sqrt{\sin\theta})^{5}} \, d\theta$$

equals _

Sol. 0.5

$$I = \int_0^{\pi^2} \frac{3\sqrt{\cos\theta}}{\left(\sqrt{\cos\theta + \sqrt{\sin\theta}}\right)^5}$$

King prop and add.

$$2I \qquad = \qquad \int_0^{\pi^2} \frac{3}{\left(\sqrt{\cos\theta + \sqrt{\sin\theta}}\right)^4}$$

$$I \qquad = \qquad \frac{3}{2} \int_0^{\pi 2} \frac{3 \sec^2 \theta}{\left(\sqrt{1 \sqrt{\sin \theta}}\right)^4}$$

$$=$$
 $tan\theta = t^2$

$$=$$
 $sec^2qd\theta = 2tan$

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

H.O.: 394, Rajeev Gandhi Nagar, Kota Toll Free: 1800-212-1799

$$I = \frac{3}{2} \int_0^{\infty} \frac{2 + dt}{(1+1)^4}$$

$$= 3 \int_0^{\infty} \frac{t+1-1}{(t+1)^4} dt$$

$$= 3 \left[\int_0^{\infty} \left[\frac{1}{(t+1)^3} - \frac{1}{(t+1)^4} \right] \right] dt$$

$$= \left[\frac{-1}{2(t+1)^2} + \frac{1}{3} \frac{1}{(t+1)^3} \right]_0^{\infty}$$

$$= 3 \left[0 - \left(-\frac{1}{2} + \frac{1}{3} \right) \right]$$

$$= 3/6 = 0.5$$

- Five persons A,B,C,D and E are seated in a circular arrangement. If each of them is given a hat 5. of one of the three colours red, blue and green, then the number of ways of distributing the hats such that the persons seated in adjacent seats get different coloured hats is_
- Sol. (30.00)

Maximum number of hats used the same colour are 2. They cannot be 3 otherwise atleast 2 hats of same colour are consecutive.

Now, Let hats used are R, R, G, G, B (Which can be selected in 3 ways. It can be RGGBB or RRGBB also)

Now, numbers of ways of disturbing blue hat (single one) in 5 person equal to 5 Let blue hat goes to person A.

Now, either position B & D are filled by green hats and C & E are filled by Rads hats or B & D are filled by Red hats and C & E are filled by Green hats

 \Rightarrow 2 ways are possible

Hence total number of ways= $3\times5\times2=30$ ways

6. The value of

$$Sec^{-1}\left(\frac{1}{4}\sum_{k=0}^{10}Sec\left(\frac{7\pi}{12} + \frac{k\pi}{2}\right)Sec\left(\frac{7\pi}{12} + \frac{(k+1)\pi}{2}\right)\right)$$

in the interval $\left[-\frac{\pi}{4}, \frac{3\pi}{4}\right]$ equals _____

Sol.

$$Sec^{-1}\left(\frac{1}{4}\sum_{k=0}^{10}\frac{1}{cos\left(\frac{7\pi}{12}+\frac{k\pi}{2}\right)cos\left(\frac{7\pi}{12}+\frac{(k+1)\pi}{2}\right)}\right)$$

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

H.O.: 394, Rajeev Gandhi Nagar, Kota Toll Free: 1800-212-1799 www.motion.ac.in S: info@motion.ac.in

$$Sec^{-1} \left[\frac{1}{4} \sum_{k=0}^{10} \frac{sin \left(\frac{7\pi}{12} + \frac{\left(k+1\right)\pi}{2} \right) - \left(\frac{7\pi}{12} + \frac{k\pi}{2} \right)}{cos \left(\frac{7\pi}{12} + \frac{k\pi}{2} \right) cos \left(\frac{7\pi}{12} + \left(k+1\right)\frac{\pi}{2} \right)} \right]$$

$$Sec^{-1}\left(\frac{1}{4}\sum_{k=0}^{10}\left(tan\left(\frac{7\pi}{12}+\left(k+1\right)\frac{\pi}{2}\right)-tan\left(\frac{7\pi}{2}+k\frac{\pi}{2}\right)\right)\right)$$

$$Sec^{-1} \ \left(\frac{1}{4} \sum_{k=0}^{10} \left(tan \left(\frac{7\pi}{12} + \frac{\pi}{2} \right) \right) + \left(tan \left(\frac{7\pi}{12} + \frac{2\pi}{2} \right) \right) \right) - tan \ \left(\frac{7\pi}{12} + \frac{\pi}{2} \right)$$

$$+\ldots + \left(\tan\left(\frac{7\pi}{12} + \frac{11\pi}{2}\right)\right) - \tan\left(\frac{7\pi}{2} + \frac{10\pi}{2}\right)$$

$$Sec^{-1}\left(\frac{1}{4}\left(\tan\frac{13\pi}{12}-\tan\frac{7\pi}{12}\right)\right)$$

$$Sec^{-1}\left(\frac{1}{4}\left(tan\left(\frac{\pi}{12}\right)-tan\left(\frac{7\pi}{12}\right)\right)\right)$$

$$Sec^{-1}\bigg(\frac{1}{4}\Big(\Big(2-\sqrt{3}\Big)+12+\sqrt{3}\Big)\bigg)$$

$$Sec^{-1}(1)$$
 = 0.00

Section 3

- This section contains TWO (02) List -Match sets
- Each List Match set has TWO (02) Multiple Choice Questions.
- Each List Match set has two lists. List I and List II
- List I has Four entries (I), (II), (III) and (IV) and List II has Six entries (P), (Q)(R), (S), (T) and (U)
- Four options are given in each multiple choice question based on List I and List II and only one of these four options satisfies the condition asked in the multiple choice question.
- Answer to each question will be evaluated according to the following marking scheme.

Full marks +3 If ONLY the option corresponding to the correct combination is chosen 0 If none of the options is chosen (i.e., the question is unanswered) Zero Marks

Negative marks -1 in all other cases.

Anser the following by appropriately matching the lists based on the information given in the paragraph

1. Let $f(x) = \sin(\pi \cos x)$ and $g(x) = \cos(2\pi \sin x)$ be two functions defined for x > 0. Define the following sets whose elements are written in the increasing order:

$$X = \{x : f(x) = 0\},$$
 $Y = \{x : f'(x) = 0\},$ $Z = \{x : g(x) = 0\},$ $W = \{x : g'(x) = 0\},$ contains the sets X, Y, Z and W. List-II contains s

 $Z = \{x : g(x) = 0\},$ $W = \{x : g'(x) = 0\},$ List -I contains the sets X, Y, Z and W. List-II contains some information regarding these sets.

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

H.O.: 394, Rajeev Gandhi Nagar, Kota Toll Free: 1800-212-1799 www.motion.ac.in | info@motion.ac.in

List-I

List-II

$$(P) \supseteq \left\{\frac{\pi}{2}, \frac{3\pi}{2}, 4\pi, 7\pi\right\}$$

(Q) an arithmetic progression

(R) NOT an arithmetic progression

$$(S) \supseteq \left\{ \frac{\pi}{6}, \frac{7\pi}{6}, \frac{13\pi}{6} \right\}$$

$$(\mathsf{T}) \supseteq \left\{ \frac{\pi}{3}, \frac{2\pi}{3}, \pi \right\}$$

(U)
$$\supseteq \left\{\frac{\pi}{6}, \frac{3\pi}{4}\right\}$$

Which of the following is the only CORRECT combination?

Sol.

2. Answer the following appropriately matching the list based on the information given in the para-

Let $f(x) = \sin(\pi \cos x)$ and $g(x) = \cos(2\pi \sin x)$ be two functions defined for x > 0. Define the following sets whose elements are written in the increasing order.

$$X = \{x : f(x) = 0\}, Y = \{x : f'(x) = 0\}$$

 $X = \{x : f(x)=0\}, \quad Y = \{x : f'(x)=0\}$ $Z = \{x : g(x)=0\}, \quad W = \{x : g'(x)=0\}$ List I contains the sets X,Y,Z and W. List II contains some information regarding these sets.

List I

List II

$$(P) \qquad \supseteq \left\{ \frac{\pi}{2}, \frac{3\pi}{2}, 4\pi, 7\pi \right\}$$

(Q) an arithemetic progression

(R) NOT an arithemetic progression

$$(S) \qquad \supseteq \left\{ \frac{\pi}{6}, \frac{7\pi}{6}, \frac{13\pi}{6} \right\}$$

$$(\mathsf{T}) \qquad \supseteq \left\{ \frac{\pi}{3}, \frac{2\pi}{3}, \pi \right\}$$

$$(U) \qquad \supseteq \left\{ \frac{\pi}{6}, \frac{3\pi}{4} \right\}$$

Which of the following is the only CORRECT combination?

Sol.

$$f(x) = 0 \Rightarrow sin(\pi cos x) = 0$$

 $\Rightarrow \pi cos x = n\pi \Rightarrow cos x = n$

$$\begin{array}{lll} \Rightarrow cosx = -1, \ 0, \ 1 & \Rightarrow X = \left(n\pi_r / (2n+1) \ \frac{\pi}{2} \right) \\ & = \left(n\frac{\pi}{2} , n \right) \\ f'(x) = 0 \Rightarrow cos(\pi cosx) \ \left(-\pi sinx \right) = 0 \\ \Rightarrow \pi cosx = \left(2n + 1 \right) \frac{\pi}{2} \ or \ x = n\pi \\ & \Rightarrow cosx = -1, \ 0, \ 1 & \Rightarrow x = \left(n\pi(2n+1) \ \frac{\pi}{2} \right) = \left(n\frac{\pi}{2} , n \in \right) \right) \\ f'(x) = 0 \Rightarrow cos(\pi cosx) \ \left(-\pi sinx \right) = 0 \\ \Rightarrow cosx = n + \frac{1}{2} \ or \ X \ n\pi \\ & \Rightarrow cos \ x = \pm \frac{1}{2} \ of \ x = n\pi \\ & \Rightarrow y = \left\{ an\pi = \frac{\pi}{3} 2\pi r = \frac{2\pi}{3} , n\pi n \right\} \\ g(x) = 0 & \Rightarrow cos(2x sinx) = 0 \\ & \Rightarrow sinx = \frac{2n+1}{2} - \frac{1}{2} + \frac{3}{2} \\ & \Rightarrow cosx = n + \frac{1}{2} \ or \ x \ n\pi \\ & \Rightarrow cosx = n + \frac{1}{2} \ or \ x \ n\pi \\ & \Rightarrow cosx = n + \frac{1}{2} \ or \ x \ n\pi \\ & \Rightarrow cosx = \frac{1}{2} \ or \ x = n\pi \\ & \Rightarrow y = \left\{ 2n\pi \pm \frac{\pi}{3} , 2n\pi \pm \frac{2\pi}{3} , n\pi, n \in 1 \right\} \\ g(x) = 0 & \Rightarrow cos(2\pi sinx) = 0 \\ & \Rightarrow 2\pi sinx = (2n+1) \frac{\pi}{2} \\ & \Rightarrow 2\pi sinx = (2n+1) \frac{\pi}{2} \\ & \Rightarrow 2\pi sinx = (2n+1) \frac{\pi}{2} \\ & \Rightarrow 2\pi sinx = n\pi or \ x = (2n+1) \frac{\pi}{2}$$

3. Answer the following by appropriately matching the list based on the information given in the paragraph.

Let the circles $C_1: x^2+y^2=9$ and $C_2: (x-3)^2+(y-4)^2=16$, intersect at the points X and Y.

Suppose that another circle C_3 : $(x-h)^2+(y-k)^2=r^2$ satisfies the following conditions

- (i) centre of C_3 is collinear with the centres of C_1 and C_2 . (ii) C_1 and C_2 both lie inside C_3 , and
- (iii) C_3 touches C_1 at M and C_2 at N

Let the line through X and Y intersect C_3 at Z and W, and let a common tangent of C_1 and C_3 be a tangent to the parabola $x^2 = 8\alpha y$.

There are some expressions given in the List I whose values are given in List II below:

(I)	List I 2h + k	(P)	List II 6
(II)	Length of ZW Length of XY	(Q)	√6
(III)	Area of triangle MZN Area of triangle ZMW	(R)	5 4
(IV)	α	(S)	<u>21</u> 5
		(T)	2√6
			10

Which of the following is the only CORRECT combination?

(1) (II), (T)

(2) (I), (U)

(3) (I), (S)

(4) (II), (Q)

Sol.

4. Answer the following by appropriately matching the list based on the information given in the paragraph.

Let the circles $C_1: x^2+y^2=9$ and $C_2: (x-3)^2+(y-4)^2=16$, intersect at the points X and Y.

Suppose that another circle C_3 : $(x-h)^2+(y-k)^2=r^2$ satisfies the following conditions

- (i) centre of C_3 is collinear with the centres of C_1 and C_2 .
- (iii) C_1 and C_2 both lie inside C_3 , and (iii) C_3 touches C_1 at M and C_2 at N

Let the line through X and Y intersect C₃ at Z and W, and let a common tangent of C₁ and C₃ be a tangent to the parabola $x^2 = 8\alpha y$.

There are some expressions given in the List I whose values are given in List II below:

List I List II (I) 2h + k(P) Length of ZW (II) (Q) $\sqrt{6}$ Length of XY Area of triangle MZN (III) (R) Area of triangle ZMW (S) (IV) (T) $2\sqrt{6}$ 10 (U)

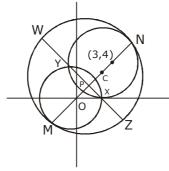
Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

H.O.: 394, Rajeev Gandhi Nagar, Kota Toll Free: 1800-212-1799 www.motion.ac.in S: info@motion.ac.in

Which of the following is the only CORRECT combination?

(1) (IV), (S)

Sol. 1



(i)
$$2r = MN = 3 + \sqrt{3^2 + 4^2} + 4 = 12 \Rightarrow r = 6$$

Contre C of circle C_3 lies on $y = \frac{4}{3} x$

Let C
$$\left(h, \frac{4}{3}h\right)$$

$$OC = MC = OM = \frac{12}{2} - 3 = 3$$

$$\therefore \qquad \sqrt{h^2 + \frac{16}{9}h^2} = 3 \qquad \Rightarrow \frac{5h}{3} = 3 \Rightarrow h = \frac{9}{5}$$

$$K = \frac{4}{3}h = \frac{12}{3}$$

$$\therefore 2h + K = \frac{18}{5} + \frac{12}{5} = 6$$

(ii) Equation of line ZW

$$C_1 - C_2 = 0$$
 $\Rightarrow 3x + 4y = 9$
Distance of ZW from (0,0)

$$\frac{|-9|}{\sqrt{3^2+4^2}} = \frac{9}{5}$$

Length of XY = 2
$$\sqrt{3^2 - \left(\sqrt{\frac{9}{5}}\right)^2} = \frac{24}{5}$$

Distance of ZW from C
$$\Rightarrow \frac{\left|\frac{3\times9}{5} + 4\frac{12}{5} - 9\right|}{\sqrt{3^2 + 4^2}} = \frac{24\sqrt{6}}{5}$$

$$\therefore \frac{\text{Length of ZW}}{\text{length of XY}} = \sqrt{6}$$

(iii) Area of
$$\Delta MZN = \frac{1}{2} MN \left(\frac{1}{2}ZW\right) = \frac{72\sqrt{6}}{5}$$

Area of
$$\triangle ZMW = \frac{1}{2} ZW (OM + OP) = \frac{1}{2} \frac{24\sqrt{6}}{5}$$

$$\left(3 + \frac{9}{5}\right) = \frac{288\sqrt{6}}{25} \qquad \therefore \qquad \frac{\text{Area of } \Delta MZN}{\text{Area of } \Delta ZMW} = \frac{5}{4}$$

(iv) Slop of tangent to
$$C_1$$
 at $M = \frac{-1}{4/3} = -\frac{3}{4}$

$$\therefore$$
 Equation of tangent y = mx $-3\sqrt{1+m^2}$

$$y = -\frac{3}{4} \times -3 \sqrt{1 + \frac{9}{16}}$$

$$y = \frac{-3x}{4} - \frac{15}{4} \Rightarrow x = -\frac{4y}{3} - 3....(i)$$

tangent to $x^2 = 4(2\alpha)y$ is

$$x = my + \frac{2\alpha}{m} \qquad(ii$$

Compare (i) and (ii)

$$m = -\frac{4}{3}$$
 and $\frac{2\alpha}{m} = -5 \Rightarrow \alpha = \frac{10}{3}$

Based on JEE Advanced'19

MARKS	FEE (After Scholarship)	
140 above	Drona Residential Program Free	
120 to 139	₹0	
100 to 120	₹ 14,500	
90 to 99	₹ 29,000	
80 to 89	₹ 43,500	
69 to 79	₹ 58,000	
40 to 69	₹ 87,000	

^{*}Scholarship Applicable at Kota Center Only

Based on JEE Main'19

JEE Main Percentile	English	Hindi	
JEE Maill Percentile	Fees (After Scholarship)		
99 & Above	Drona Residential Program Free		
97.5 To 99	₹0	₹0	
97 To 97.5	₹ 14,500	₹ 14,500	
96.5 To 97	₹ 29,000	₹ 29,000	
96 To 96.5	₹ 58,000	₹ 58,000	
95.5 To 96	₹ 65,250	₹ 65,250	
95 To 95.5	₹ 72,500	₹ 72,500	
93 To 95	₹ 87,000	₹ 87,000	
90 To 93	₹ 1,01,500	₹ 94,250	
85 To 90	₹ 1,08,750	₹ 1,01,500	
80 To 85	₹ 1,16,000	₹ 1,08,750	
75 To 80	₹ 1,30,500	₹ 1,23,250	

JEE MAIN Special Batch for Class 14th Repeaters

Flat 50% Scholarship

(Fee after Scholarship) **Only** ₹ **46,750**