

IIT/NIT | NEET / AIIMS | NTSE / IJSO / OLYMPIADS

कोटा का रिपिटर्स (12th पास) का सर्वश्रेष्ठ रिजल्ट देने वाला संस्थान

AIR 82 Sarthak Behera

AIR 120 Pankaj

AIR 146 Varun Goyal

AIR 148 Mukul Kumar

Total Selection 709/2084 = **34.02%**

JEE MAIN 2019 RESULT

AIR 79 Shiv Kumar Modi

AIR 85 Anuj Chaudhary

AIR 96 Shubham Kumar

AIR 120 Eeshaan Jain

Students Qualified for JEE ADVANCED 2288/3316 = 68.99%

Toll Free: 1800-212-1799

H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in | ⋈: info@motion.ac.in

CRITERIA FOR DIRECT ADMISSION IN STAR BATCHES

V STAR BATCH XII Pass (JEE M+A)

ELIGIBILITY

JEE Main'19 %tile > 98%tile

JEE Advanced'19 Rank (Gen.) < 15,000

P STAR BATCH XI Moving (JEE M+A)

NTSE Stage-1 Qualified or NTSE Score > 160

ELIGIBILITY

100 marks in Science or Maths in Board Exam J STAR BATCH XII Pass (NEET/AIIMS)

ELIGIBILITY

NEET'19 Score > 450 Marks

AIIMS'19 %tile > 98%tile

H STAR BATCH
XI Moving (NEET/AIIMS)

NTSE Stage-1 Qualified or NTSE Score > 160

100 marks in Science or Maths in Board Exam

Scholarship Criteria

JEE Main Percentile	SCHOLARSHIP+ STIPEND	JEE Advanced Rank	SCHOLARSHIP+ Stipend	
98 - 99	100%	10000-20000	100%	
Above 99	100% + ₹ 5000/ month	Under 10000	100% + ₹ 5000/ month	
NEET 2019 Marks	SCHOLARSHIP+ STIPEND	NTSE STAGE-1 2019 Marks	SCHOLARSHIP+ STIPEND	
450	100%	160-170	100% + ₹ 2000/ month	
530-550	100% + ₹ 2000/ month	171-180	100% + ₹ 4000/month	
550-560	100% + ₹ 4000/month	171-100	100 /0 + \ 4000/III0IIIII	
560	100% + ₹ 5000/month	180+	100% + ₹ 5000/month	

FEATURES:

- Batch will be taught by NV Sir & HOD's Only.
- Weekly Quizes apart from regular test.
- Under direct guidance of NV Sir.
- Residential campus facility available.
- 20 CBT (Computer Based Test) for better practice.
- Permanent academic coordinator for personal academic requirement.
- Small batch with only selected student.
- All the top brands material will be discussed.

MATHS [JEE ADVANCED - 2019] PAPER - 1

SECTION -1 (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has FOUR options ONLY ONE of these four options is correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme.
 - : +3 If ONLY the correct option is chosen.
 - Zero Marks 0 If none of the options is choosen (i.e. the question is unanswered)
 - Negative marks : -1 In all other cases
- A line y = mx + 1 intersects the circle $(x 3)^2 + (y + 2)^2 = 25$ at the points P and Q. If the 1. midpoint of the line segment PQ has x - coordinate $\frac{-3}{5}$, then which one of the following options is correct?
- $(1) 3 \le m < -1$ $(2) 6 \le m < 8$ $(3) 4 \le m < 6$ $(4) 2 \le m < 4$ Sol.

$$m_{AB}$$
. $m_{cm} = -1$

$$\Rightarrow m \cdot \left(\frac{1 - \frac{3}{5}m + 2}{\frac{3}{5} - 3} \right) = -1$$

$$\Rightarrow m \left(\frac{15 - 3m}{-18} \right) = -1$$

$$\Rightarrow$$
 15m - 3m² -18 = 0

$$m^2 - 5m + 6 = 0$$

$$m = 2$$
, $m = 3 \Rightarrow 2 \le m < 4$

- Let $M = \begin{bmatrix} \sin^4 \theta & -1 \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{bmatrix} = \alpha I + \beta M^{-1}$ 2.
 - where $\alpha = \alpha(\theta)$ and $\beta = \beta(\theta)$ are real numbers, and I is the 2 × 2 identity matrix. If α^* is the minimum of set $\{\alpha(\theta): \theta \in [0,2\pi)\}$ and β^* is the minimum of the set $\{\beta(\theta): \theta \in [0,2\pi)\}$ then the value of $\alpha^* + \beta^*$ is

$$(1) \frac{-29}{16}$$

$$(2) - \frac{37}{16}$$

$$(2) - \frac{37}{16}$$
 $(3) - \frac{17}{16}$ $(4) - \frac{31}{16}$

$$(4) - \frac{31}{16}$$

Sol.

$$M = \begin{bmatrix} \sin^4 \theta & -1 - \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{bmatrix} = \alpha I + \beta M^{-1}$$

 $M = \alpha I + \beta M^{-1}$

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

H.O.: 394, Rajeev Gandhi Nagar, Kota Toll Free: 1800-212-1799 www.motion.ac.in S: info@motion.ac.in

$$M^2 = \alpha M + \beta I$$

$$\begin{bmatrix} \sin^4\theta & -1-\sin^2\theta \\ 1+\cos^2\theta & \cos^4\theta \end{bmatrix} \begin{bmatrix} \sin^4\theta & -1-\sin^2\theta \\ 1+\cos^2\theta & \cos^4\theta \end{bmatrix} = \beta \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \alpha \begin{bmatrix} \sin^4\theta & -1-\sin^2\theta \\ 1+\cos^2\theta & \cos^4\theta \end{bmatrix}$$

$$\sin^8\theta - 1 - \sin^2\theta - \cos^2\theta - \cos^2\theta \sin^2\theta = \beta + \alpha \sin^4\theta$$

$$\sin^8\theta - 2 - \cos^2\theta \sin^2\theta = \beta + \alpha \sin^4\theta$$
(1)

$$\sin^2\theta + \cos^2\theta \sin^4\theta + \cos^4\theta + \cos^6\theta = \alpha(1 + \cos^2\theta)$$

$$\alpha = \frac{\sin^4\theta \left(1 + \cos^2\theta\right) + \cos^4\theta \left(1 + \cos^2\theta\right)}{\left(1 + \cos^2\theta\right)}$$

$$\alpha = \sin^4\theta + \cos^4\theta = 1 - \frac{1}{2}\sin^2 2\theta$$

$$\alpha_{min} = 1 - \frac{1}{2} = -\frac{1}{2}$$

for equation (1)

$$\sin^8\theta - 2 - \cos^2\theta \sin^2\theta - \alpha \sin^4\theta = \beta$$

$$\beta = \sin^2\theta - 2 - \sin^2\theta \cos^2\theta - \sin^4\theta(\sin^4\theta + \cos^4\theta)$$

$$\beta = -2 - \sin^2\theta \cos^2\theta - \sin^4\theta \cos^4\theta$$

$$\beta = -2 - \frac{1}{4}\sin^2 2\theta - \frac{1}{16}(\sin 2\theta)^4$$

$$\beta = -2 - \frac{1}{16} \left\{ \left(\sin 2\theta \right)^4 + 4 \left(\sin^2 2\theta \right) + 4 \right\} + \frac{1}{4}$$

$$\beta = -\frac{7}{4} - \frac{1}{16} \{ \sin 2\theta + 2 \}^2$$

$$\beta = -\frac{7}{4} - \frac{1}{16}.9 = \frac{-7}{4} - \frac{9}{16} = \frac{-28 - 9}{16} = -\frac{37}{16}$$

$$\alpha^*_{min} + \beta^*_{min} = \frac{-37 + 8}{16} = \frac{-29}{16}$$

Let S be the set of all complex numbers z satsfying $|z-2+i| \ge \sqrt{5}$. If the complex number z_0 3.

is such that $\frac{1}{|z_0-1|}$ is the maximum of the set $\left\{\frac{1}{|z-1|}:z\in S\right\}$, then the principal argument of

$$\frac{4-z_0-\overline{z}_0}{z_0-\overline{z}_0+2i} \text{ is }$$

$$(1) \frac{\pi}{2}$$

(1)
$$\frac{\pi}{2}$$
 (2) $\frac{3\pi}{4}$

(3)
$$\frac{\pi}{4}$$

(4)
$$-\frac{\pi}{2}$$

Sol.

$$|z-2+i| \ge \sqrt{5}$$
 for max of $\frac{1}{|z_0-1|}$
 $\Rightarrow \min|z_0-1|$

$$m_{CA} = tan\theta = \frac{1}{-1} = -1$$

Now use parametric coordinate $\theta = 135^{\circ}$

$$P(z_0) = \left\{ \left(2 + \sqrt{5} \cdot \left(\frac{-1}{\sqrt{2}}\right)\right), \left(-1 + \sqrt{5}\left(\frac{1}{\sqrt{2}}\right)\right) \right\}$$

$$\Rightarrow z_0 = \left(2 - \sqrt{\frac{5}{2}}, -1 + \sqrt{\frac{5}{2}}\right)$$

$$\Rightarrow \text{arg} \left(\frac{4 - \left(z_0 + \overline{z}_0\right)}{\left(z_0 - \overline{z}_0\right) + 2i} \right) \quad \Rightarrow \text{arg} \left(\frac{4 - \left(2\left\{2 - \sqrt{\frac{5}{2}}\right\}\right)}{2i + 2\left(-1 + \sqrt{\frac{5}{2}}\right)i} \right)$$

$$\Rightarrow \text{arg}\bigg(\frac{\sqrt{10}}{\text{i}\sqrt{10}}\bigg) \qquad \Rightarrow \text{arg}\bigg(\frac{1}{\text{i}}\bigg)$$

$$\Rightarrow$$
 arg(-i) = $\frac{-\pi}{2}$

4. The area of region $\{(x,y): xy \le 8, 1 \le y \le x^2\}$ is

- (1) $16\log_e 2 \frac{14}{3}$ (2) $8\log_e 2 \frac{7}{3}$ (3) $8\log_e 2 \frac{14}{3}$ (4) $16\log_e 2 6$

Sol.

$$xy \le 8 - 8 \cdot 1 \le y \le x^2$$

$$A = \int_{1}^{2} (x^{2} - 1) dx + \int_{2}^{8} (\frac{8}{x} - 1) dx$$

$$A = \frac{x^3}{3} \Big|_1^2 + 8 \ln x \Big|_2^8 - 1 - 6$$

$$A = \left(\frac{8}{3} - \frac{1}{3}\right) + 8(\ln 8 - \ln 2) - 7$$

$$A = \frac{7}{3} - 7 + 16 \ln 2$$

$$A = 16 \ln 2 - \frac{14}{3}$$

SECTION -2 (Maximum Marks: 12)

This section contains EIGHT (08) questions.

• Each question has **FOUR** options ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).

Answer to each question will be evaluated according to the following marking scheme.

Full marks : +4 If only (all) the correct option(s) is (are) chosen;

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen

and both of which are correct

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.

Zero Marks : 0 If two or more options is chosen (i.e. the question is unanswered)

Negative Marks : -1 in all other cases

 For example, in a question, if (A),(B) and (D) are the ONLY three options corresponding to correct answer, then

choosing ONLY (A), (B) and (D) will get +4 marks choosing ONLY (A) and (B) will get +2 marks

choosing ONLY (A) and (D) will get +2 marks

choosing ONLY (B) and (D) will get +2 marks

choosing ONLY (A) will get +1 mark

choosing ONLY (B) will get +1 mark

choosing ONLY (D) will get +1 mark

choosing no option (i.e., the question is unanswered) will get 0 marks; and

choosing any other combination of options will get -1 mark

Let $\[\]$ denotes a curve y = y(x) which is in the first quadrant and let the point (1,0) lie on it. Let the tangent to $\[\]$ at a point P intersect the y - axis at Y_p . If PY_p has length 1 for each point P on $\[\]$, then Which of the following options is/are correct ?

(1)
$$xy' - \sqrt{1-x^2} = 0$$

(2)
$$y = -\log_e \left(\frac{1 + \sqrt{1 - x^2}}{x} \right) + \sqrt{1 - x^2}$$

(3)
$$xy' + \sqrt{1-x^2} = 0$$

(4)
$$y = log_e \left(\frac{1 + \sqrt{1 - x^2}}{x} \right) - \sqrt{1 - x^2}$$

Sol. 3,4

Equation of Tangent at P

$$Y - y = \frac{dy}{dx}(X - x)$$

For
$$Y_p \Rightarrow (X = 0)$$

$$Y_p = y - x \frac{dy}{dx}$$

distance
$$Y_pP = 1$$

$$x^2 + \left(y - y + x \frac{dy}{dx}\right)^2 = 1$$

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

H.O.: 394, Rajeev Gandhi Nagar, Kota
Toll Free: 1800-212-1799
www.motion.ac.in | improvementation.ac.in

JEE Advanced Rank Predictor: motioniitjee.com/jee-advanced-2019-rankpredictor/

$$x^2 \left(1 + \left(\frac{dy}{dx} \right)^2 \right) = 1$$

$$\left(\frac{dy}{dx}\right)^2 = \frac{1}{x^2} - 1$$

$$\frac{dy}{dx} = \pm \frac{\sqrt{1-x^2}}{x} \rightarrow \text{option 1 and 3}$$

$$\int dy = \pm \int \frac{\sqrt{1-x^2}}{x} dx$$

$$x = \sin\theta$$

$$y = \pm \int \frac{\cos \theta}{\sin \theta} \cos \theta d\theta$$

$$y = \pm \int \frac{1 - \sin^2 \theta}{\sin \theta} d\theta$$

$$y = \pm \int (\cos e c\theta - \sin \theta) d\theta$$

$$y = \pm (\ln|\cos ec\theta + \cot \theta| + \cos \theta) + C$$

$$y = \pm \left[\ln \left| \frac{1}{x} - \frac{\sqrt{1 - x^2}}{x} \right| + \sqrt{1 - x^2} \right] + C$$

P as
$$(1,0) \Rightarrow c = 0$$

$$y = \pm \left(ln \left(\frac{1 + \sqrt{1 - x^2}}{x} \right) + \sqrt{1 - x^2} \right) \rightarrow option (2), (4)$$

Define the collections $\{E_1,E_2,\ E_3.....\}$ of ellipse and $\{R_1,\ R_2,\ R_3\\}$ of rectangles as follows : 2.

$$E_1: \frac{x^2}{9} + \frac{y^2}{4} = 1$$
;

 R_1 : rectangle of largest area, with sides parallel to the axes, inscribed in E_1 ;

$$E_n$$
: ellipse $\frac{X^2}{a_n^2} + \frac{y^2}{b_n^2} = 1$ of largest area inscribed in R_{n-1} , $n > 1$;

 R_n : rectangle of largest area, with sides parallel to the axes, inscribed in E_n , n > 1Then which of the following options is/are correct? (1)The eccentricities of E_{18} and E_{19} are NOT equal

(2) The distance of a focus from the centre in E_9 is $\frac{\sqrt{5}}{22}$

- (3) $\sum_{n=1}^{N}$ (area of R_n) < 24, for each positive integer N
- (4) The length of latus rectum of E_9 is $\frac{1}{6}$

2. (3),(4)

$$\mathsf{E}_1 \; \Rightarrow \; \frac{\mathsf{X}^2}{\mathsf{9}} + \frac{\mathsf{y}^2}{\mathsf{4}} \; = \; \mathsf{1}$$

 $I = 6 \cos\theta$

 $b = 4sin\theta$

Area = $12 \times \sin 2\theta$

 $A_{max} = 12$ $\sin 2\theta = 1$

$$2\theta = \frac{\pi}{2}$$

$$\theta = \frac{\pi}{4}$$

$$E_2: a = \frac{3}{\sqrt{2}}$$
; $b = \frac{2}{\sqrt{2}}$; $a = 3$; $r = \frac{1}{\sqrt{2}}$; $b = 2$; $r = \frac{1}{\sqrt{2}}$

- (i) $e^2 = 1 \frac{b^2}{a^2}$ eccentricities of all ellipse will be equal
- (ii) for E_9 ; $e = \frac{\sqrt{5}}{3}$ and $a = 3 \times \left(\frac{1}{\sqrt{2}}\right)^8$
- : distance of focus from centre

= ae =
$$\frac{3}{16} \times \frac{\sqrt{5}}{3} = \frac{\sqrt{5}}{16}$$

(iii) sum of area of rectangles = $12 + 6 + 3 + \dots$

$$A = \frac{12}{1 - \frac{1}{2}} = 24$$

(iv) L.R. =
$$\frac{2b^2}{a}$$
 = $\frac{2 \times \left(2 \times \frac{1}{16}\right)^2}{2 \cdot \frac{1}{16}}$ = $\frac{2 \times \frac{1}{64}}{3 \times \frac{1}{16}}$ = $\frac{1}{6}$

3. Let
$$M = \begin{bmatrix} 0 & 1 & a \\ 1 & 2 & 3 \\ 3 & b & 1 \end{bmatrix}$$
 and adj $M = \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$ where a and b are real numbers. Which of the

following options is/are correct?

(1)
$$\det(adjM^2) = 81$$

$$(2) a + b = 3$$

(3)
$$(adj M)^{-1} + adj M^{-1} = -M$$

(4) if
$$M\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, then $\alpha - \beta + \gamma = 3$

Sol. 2,3,4

$$M = \begin{bmatrix} 0 & 1 & a \\ 1 & 2 & 3 \\ 3 & b & 1 \end{bmatrix} \text{ and adj } M = \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$$

$$\Rightarrow \text{adj M} = \begin{bmatrix} 2-3b & ab-1 & -1 \\ 8 & -6 & 2 \\ b-6 & 3 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$$

$$2 - 3b = -1$$
 ; $ab - 1 = 1$ $b - 6 = -5$; $a = 2$

$$b - 6 = -5$$
; $a = 2$

$$b = 1$$

Now M =
$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$

$$|M| = 8 - 10 = -2$$

 $\Rightarrow a + b = 3$ option (2)

$$\Rightarrow a + b = 3 \text{ option } ($$
$$|adj(M^2)| = |M^2|^2$$

$$= |M|^4 = 16$$

$$(3) (adjM)^{-1} + adj(M^{-1}) option(3)$$

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

=
$$adj(M^{-1}) + adj(M^{-1})$$

= $2adj(M^{-1})$

$$= 2(|M^{-1}|M)$$

$$= 2\left(\frac{1}{-2}M\right)$$

(4)
$$M\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\beta + 2\gamma = 1$$

$$\alpha + 2\beta + 3\gamma = 2$$

$$3\alpha + \beta + \gamma = 1$$

$$\alpha$$
 1

$$\beta = -1$$

$$\gamma = 1$$

$$\alpha - \beta + \gamma = 3$$
 option (4)

4. Let α and β be the roots of $x^2 - x - 1 = 0$, with $\alpha > \beta$. For all positive integer n, define

$$a_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 , $n \ge 1$

$$b_1 = 1$$
 and $b_n = a_{n-1} + a_{n+1}$, $n \ge 2$

Then which of the following options is/are correct?

(1)
$$a_1 + a_2 + a_3 + \dots + a_n = a_{n+2} - 1$$
 for all $n \ge 1$ (2) $b_n = \alpha^n + \beta^n$ for all $n \ge 1$

(2)
$$b_n = \alpha^n + \beta^n$$
 for all $n \ge 1$

(3)
$$\sum_{n=1}^{\infty} \frac{b_n}{10^n} = \frac{8}{89}$$

(4)
$$\sum_{n=1}^{\infty} \frac{a_n}{10^n} = \frac{10}{89}$$

$$1,2,4$$

 $x^2 - x - 1 = 0$

$$a_{n} = \frac{\alpha^{n} - \beta^{n}}{\alpha - \beta} (2) b_{1} = 1 b_{n} = a_{n-1} + a_{n+1}$$

$$\alpha = \frac{1+\sqrt{5}}{2}, \beta = \frac{1-\sqrt{5}}{2}$$

$$b_n \ = \ \frac{\alpha^{n-1} - \beta^{n-1}}{\alpha - \beta} \ + \ \frac{\alpha^{n+1} + \beta^{n+1}}{\alpha - \beta}$$

$$= \ \frac{\alpha^{n-1} \left(1+\alpha^2\right) - \beta^{n-1} \left(1+\beta^2\right)}{\alpha - \beta}$$

$$= \ \frac{\alpha^{n-1} \left(\alpha + 2\right) - \beta^{n-1} \left(\beta + 2\right)}{\alpha - \beta}$$

$$= \frac{\alpha^{n-1} \left(\frac{5+\sqrt{5}}{2}\right) - \beta^{n-1} \left(\frac{5-\sqrt{5}}{2}\right)}{\alpha - \beta}$$

$$= \ \frac{\sqrt{5}\alpha^n + \sqrt{5}\beta^n}{\alpha - \beta} \ = \ \alpha^n \ + \ \beta^n$$

(i)
$$a_1 + a_2 + a_3 + \dots + a_n$$

$$= \ \frac{\left(\alpha + \alpha^2 + \ldots + \alpha^n\right) - \left(\beta + \beta^2 + \ldots \beta^n\right)}{\alpha - \beta}$$

$$= \frac{\alpha \left(1 - \alpha^{n}\right)}{1 - \alpha} - \frac{\beta \left(1 - \beta^{n}\right)}{1 - \beta}$$

$$\alpha^2 - \alpha - 1 = 0$$

$$\alpha^2 - 1 = \alpha$$

$$\alpha + 1 = \frac{\alpha}{\alpha - 1}$$

$$= \frac{-\alpha^{2} \left(1 - \alpha^{n}\right) + \beta^{2} \left(1 - \beta^{n}\right)}{\alpha - \beta}$$

$$= \frac{-\alpha^2 + \alpha^{n+2} + \beta^2 - \beta^{n+2}}{(\alpha - \beta)}$$

$$= \ \frac{\alpha^{n+2} - \beta^{n+2}}{\alpha - \beta} \ - \ \left(\alpha + \beta\right)$$

$$= a_{n+2} - 1$$

(3)
$$\sum \frac{b_n}{10^n} = \sum \left(\frac{\alpha^n}{10^n} + \frac{\beta^n}{10^n} \right)$$

$$= \left(\frac{\alpha}{10} + \frac{\alpha^2}{10^2} + \dots\right)$$

$$= \frac{\frac{\alpha}{10}}{1 - \frac{\alpha}{10}} + \frac{\beta}{1 - \frac{\beta}{10}}$$

$$= \ \frac{\alpha}{10-\alpha} + \frac{\beta}{10-\beta}$$

$$= \frac{10(\alpha + \beta) - 2\alpha\beta}{100 - 10(\alpha + \beta) + \alpha\beta}$$

$$= \frac{10+2}{100-10-1} = \frac{12}{89}$$

$$(4) \sum \frac{a^n}{10^n} = \frac{1}{\alpha - \beta} \left\{ \frac{\alpha}{10 - \alpha} - \frac{\beta}{10 - \beta} \right\}$$

$$= \frac{1}{\alpha - \beta} \left\{ \frac{10(\alpha - \beta)}{89} \right\} = \frac{10}{89}$$

5. Let
$$f: R \rightarrow R$$
 be given by

$$f(x) = \begin{cases} x^5 + 5x^4 + 10x^3 + 10x^2 + 3x + 1, & x < 0 \\ x^2 - x + 1, & 0 \le x < 1; \\ \frac{2}{3}x^3 - 4x^2 + 7x - \frac{8}{3}, & 1 \le x < 3 \\ (x - 2)log_e(x - 2) - x + \frac{10}{3}, & x \ge 3 \end{cases}$$

Then which of the following options is /are correct?

- (1) f is increasing on $(-\infty,0)$
- (2) f is onto
- (3) f' has a local maximum at x = 1 (4) f' is NOT differentiable at x = 1

Sol. 2,3,4

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

H.O.: 394, Rajeev Gandhi Nagar, Kota Toll Free: 1800-212-1799 www.motion.ac.in | info@motion.ac.in

$$f(x) = \begin{bmatrix} x^5 + 5x^4 + 10x^3 + 10x^2 + 3x + 1 & x < 0 \\ x^2 - x + 1 & 0 \le x < 1 \\ \frac{2}{3}x^3 - 4x^2 + 7x - \frac{8}{3} & 1 \le x < 3 \\ (x - 2)\ell n(x - 2) - x + \frac{10}{3} & x \ge 3 \end{bmatrix}$$

f is onto :: Range = R (ℓ n (x-2) contains all real values)

$$f'(x) = \begin{bmatrix} 5x^4 + 20x^3 + 30x^2 + 20x + 3 & x < 0 \\ 2x - 1 & 0 \le x < 1 \\ 2x^2 - 8x + 7 & 1 \le x < 3 \\ 1 + \ell n(x - 2) - 1 & x \ge 3 \end{bmatrix}$$
Check diff of f' at $x = 1$

$$\begin{bmatrix} RHD = -4 \\ LHD = 2 \end{bmatrix}$$

$$\begin{bmatrix} 20x^3 + 60x^2 + 60x + 20 & x < 0 \\ 2x - 1 & 0 \le x < 1 \end{bmatrix}$$

$$f''(x) = \begin{bmatrix} 20x^3 + 60x^2 + 60x + 20 & x < 0 \\ 2 & 0 \le x < 1 \\ 4x - 8 & 1 \le x < 3 \\ \frac{1}{x - 2} & x \ge 3 \end{bmatrix}$$

$$f''(x) = \begin{bmatrix} 20(1+x)^3 & x < 0 \\ 2 & 0 \le x < 1 \\ 4x - 8 & 1 \le x < 3 \\ \frac{1}{x - 2} & x \ge 3 \end{bmatrix}$$

There are three bags B_1 , B_2 and B_3 . The bag B_1 contains 5 red and 5 green balls, B_2 contains 3 red and 5 green balls, and B_3 contains 5 red and 3 green balls. Bags B_1 , B_2 and B_3 have probabilities 6.

 $\frac{3}{10}$, $\frac{3}{10}$ and $\frac{4}{10}$ respectively of being chosen. A bag is selected at random and a ball is chosen at random from the bag. Then which of the following options is/are correct?

- (1) Probability that the chosen ball is green, given that the selected bag is B_3 , equals $\frac{3}{8}$
- (2) Probability that the selected bag is B_3 and the chosen ball is green equals $\frac{3}{10}$

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

H.O.: 394, Rajeev Gandhi Nagar, Kota Toll Free: 1800-212-1799 www.motion.ac.in | info@motion.ac.in

JEE Advanced Rank Predictor: motioniitjee.com/jee-advanced-2019-rankpredictor/

- (3) Probability that the selected bag is B_3 , given that chosen ball is green, equals $\frac{5}{13}$
- (4) Probability that the chosen ball is green equals $\frac{39}{80}$

Sol. 1, 4

$$B_1$$
 B_2 B_3 B_3

$$P(B_1) = \frac{3}{10} | P(B_2) = \frac{3}{10} | P(B_3) = \frac{4}{10}$$

1.
$$P(G_1|B_3) = \frac{3}{8} = \frac{3}{8}$$

$$2. \qquad P(B_3|G) = \boxed{\frac{4}{13}}$$

3.
$$P(B_3|G) = \frac{12}{39} = \boxed{\frac{4}{13}}$$

4.
$$P(G) = \frac{3}{10} \cdot \frac{5}{10} + \frac{3}{10} \cdot \frac{5}{8} + \frac{4}{10} \cdot \frac{3}{8} = \frac{12 + 15 + 12}{80} = \boxed{\frac{39}{80}}$$

In a non-right angled triangle $\triangle PQR$, let p,q,r denote the lengths of the sides opposite to the angles at P,Q,R respectively. The median from R meets the side PQ at S, the perpendicular from P meets the side QR at E, and RS and PE intersect at O. If $p = \sqrt{3}$, q=1, and the radius of the circumcircle of the $\triangle PQR$ equals 1, then which of the following options is/are correct?

(1) Length of RS =
$$\frac{\sqrt{7}}{2}$$

(2) Length of OE =
$$\frac{1}{6}$$

- (3) Radius of incircle $\triangle PQR = \frac{\sqrt{3}}{2}(2-\sqrt{3})$ (4) Area of $\triangle SOE = \frac{\sqrt{3}}{12}$
- Sol. 1,2,3

sin Law

$$\frac{QP}{\sin P} = \frac{PR}{\sin \theta} = 2R$$

$$\frac{\sqrt{3}}{\sin P} = \frac{1}{\sin \theta} = 2$$

$$sinP = \frac{\sqrt{3}}{2} \left\langle P = 60 \right\rangle$$

$$P = 120$$

$$\sin\theta = \frac{1}{2} \begin{cases} \theta = 30 \\ \theta = 150 \end{cases}$$

$$\angle P = 120^{\circ}$$
 , $\theta = 30^{\circ}$, $\angle R = 30^{\circ}$

(1) RS =
$$\frac{1}{2}\sqrt{2(\sqrt{3})^2 + 2(1)^2 - 1} = \frac{\sqrt{7}}{2}$$
 Ans 1

(2) Eq. of RS:
$$(y - 0) = \frac{\frac{1}{4} - 0}{\frac{\sqrt{3}}{4} - \sqrt{3}} (x - \sqrt{3}) \Rightarrow y = -\frac{1}{3\sqrt{3}} (x - \sqrt{3})$$

Hence coordinate of O : $\left(\frac{\sqrt{3}}{2}, \frac{1}{6}\right)$

$$\Rightarrow$$
 $OE = \frac{1}{6}$

(3)
$$r = \frac{\Delta}{S} = \frac{\frac{1}{2} \cdot \sqrt{3} \cdot \frac{1}{2}}{\frac{\sqrt{3} + 1 + 1}{2}} = \frac{\sqrt{3}}{2(2 + \sqrt{3})}$$

$$\frac{\sqrt{3}}{2}(2-\sqrt{3})$$

(4)
$$\Delta = \frac{1}{2} \begin{vmatrix} \frac{\sqrt{3}}{2} & 0 & 1 \\ \frac{\sqrt{3}}{2} & \frac{1}{6} & 1 \\ \frac{\sqrt{3}}{4} & \frac{1}{4} & 1 \end{vmatrix}$$

$$= \begin{vmatrix} \frac{\sqrt{3}}{4} & 1 & 0 & 1 \\ 1 & \frac{1}{6} & 1 \\ \frac{1}{2} & \frac{1}{4} & 1 \end{vmatrix} = \begin{vmatrix} \frac{\sqrt{3}}{4} \left\{ 1 \left(\frac{1}{6} - \frac{1}{4} \right) + 1 \left(\frac{1}{4} - \frac{1}{12} \right) \right\} \end{vmatrix}$$

$$= \left| \frac{\sqrt{3}}{4} \left\{ \frac{-2}{24} + \frac{2}{12} \right\} \right| = \left| \frac{\sqrt{3}}{4} \cdot \frac{2}{24} \right| = \frac{\sqrt{3}}{48}$$

8. Let L₁ and L₂ denote the lines

$$\vec{r} = \hat{i} + \lambda(-\hat{i} + 2\hat{j} + 2\hat{k}), \lambda \in R$$
 and

$$\vec{r} = \mu(2\hat{i} - \hat{j} + 2\hat{k}), \mu \in R$$

respectively, If L_3 is a line which is perpendicular to both L_1 and L_2 and cuts both of them, then which of the following options describe(s) L₃?

(1)
$$\vec{r} = \frac{2}{9}(2\hat{i} - \hat{j} + 2\hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$$
 (2) $\vec{r} = \frac{2}{9}(4\hat{i} + \hat{j} + \hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$

(2)
$$\vec{r} = \frac{2}{9}(4\hat{i} + \hat{j} + \hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$$

(3)
$$\vec{r} = \frac{1}{3}(2\hat{i} + \hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$$
 (4) $\vec{r} = t(2\hat{i} + 2\hat{j} - \hat{k}) t \in \mathbb{R}$

(4)
$$\vec{r} = t(2\hat{i} + 2\hat{j} - \hat{k}) t \in R$$

Sol.

$$L_1 \rightarrow \frac{x-1}{-1} = \frac{y-0}{2} = \frac{z-0}{2}$$

$$L_2 \rightarrow \frac{x}{2} = \frac{y}{-1} = \frac{z}{2}$$

$$L_3 \rightarrow \frac{x}{a} = \frac{y}{b} = \frac{z}{c}$$

$$L_3 \perp L_1 \& L_2 L_3 \mid \mid (L_1 \times L_2)$$

$$L_3 \mid \mid (L_1 \times L_2)$$

$$\therefore L_3 \mid \mid (6\hat{i} + 6\hat{j} - 3\hat{k})$$

Let any point on L₁ is $\equiv (-\lambda + 1, 2\lambda, 2\lambda)$

Let any point on L₂ is B = $(2\mu, -\mu, 2\mu)$

DR(s) of AB will be

 $2\mu + \lambda -1$, $-\mu -2\lambda$, $2\mu -2\lambda$

But D.R. of AB are

$$\therefore \frac{2\mu + \lambda - 1}{2} = \frac{-\mu - 2\lambda}{2} = \frac{2\mu - 2\lambda}{-1} = k(let)$$

$$\begin{array}{lll} \therefore \ 2\mu + \lambda - 1 = 2k &(1) \\ -\mu - 2\lambda = 2k &(2) \\ 2\mu - 2\lambda = -k &(3) \\ \text{Solve (1) \& (3)} \end{array}$$

$$-\mu - 2\lambda = 2k \qquad \dots (2)$$

$$2\mu - 2\lambda = -k$$
 ... Solve (1) & (3)

$$\lambda = \frac{3k+1}{3}$$

Put
$$\lambda = \frac{3k+1}{3}$$
 in equation (2)

$$\mu = \frac{12k+2}{(-3)}$$

Put $\lambda \& \mu$ in eq. (3)

$$2\left(\frac{12k+2}{-3}\right) - 2\left(\frac{3k+1}{3}\right) + k = 0$$

$$k=-\frac{2}{9}$$

$$\therefore \lambda = \frac{3\left(-\frac{2}{9}\right) + 1}{3} = \frac{-\frac{2}{3} + 1}{3} = \frac{1}{9}$$

$$\mu = \frac{12\left(\frac{-2}{9}\right) + 2}{-3} = \frac{\frac{-8}{3} + 2}{-3} = \frac{2}{9}$$

$$\therefore A \equiv (-\lambda + 1, 2\lambda, 2\lambda)$$

$$\Rightarrow \left(\frac{-1}{9}+1,\frac{2}{9},\frac{2}{9}\right)$$

$$A \equiv \left(\frac{8}{9}, \frac{2}{9}, \frac{2}{9}\right)$$

$$\therefore B \equiv (2\mu, -\mu, 2\mu) \quad \Rightarrow \quad B \equiv \left(\frac{4}{9}, \frac{-2}{9}, \frac{4}{9}\right)$$

$$\mathsf{B} \equiv \left(\frac{4}{9}, \frac{-2}{9}, \frac{4}{9}\right)$$

∴ Equation of L₃ can be

$$L_3 \rightarrow \vec{r} = \frac{2}{9}(4\hat{i} + \hat{j} + \hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k}), t \in R$$

or
$$L_3 \rightarrow \vec{r} = \frac{2}{9}(2\hat{i} - \hat{j} + 2\hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k}), t \in R$$

Section - 3

- This section contains SIX (06) quustions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/roundoff the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme;

Full Marks : +3 If ONLY the correct numerical value is entered

Zero Marks : 0 in all other cases.

Three lines are given by 1.

$$\vec{r} = \lambda \hat{i}, \lambda \in R$$

$$\vec{r} = \mu(\hat{i} + \hat{j}), \mu \in R$$

$$\vec{r} = v(\hat{i} + \hat{j} + \hat{k}), v \in R$$

Let the lines cut the plane x + y + z = 1 at the points A, B and C respectively. If the area of the triangle ABC is Δ then value of $(6\Delta)^2$ equals _____

Sol.

$$\vec{r} = \lambda \hat{i} \qquad \vec{r} = \mu \Big(\hat{i} + \hat{j} \Big) \qquad \vec{r} = \nu \Big(\hat{i} + \hat{j} + \hat{k} \Big)$$

$$x + y + z = 1$$

$$x + y + z = 1$$

Ist line
$$x = \lambda$$
, $y = 0$, $z = 0$

$$\therefore \qquad \boxed{\lambda=1} \ \, \mathsf{A}(1,0,0)$$

$$x = \mu, y = \mu, z = 0$$

$$\therefore 2\mu=1$$
 $B\left(\frac{1}{2},\frac{1}{2},0\right)$

Similarly
$$C\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

$$\therefore \text{ Area of } \Delta = \frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{AC} |$$

$$= \ \frac{1}{2} \left| \left(-\frac{1}{2}\,\hat{i} + \frac{1}{2}\,\hat{j} \right) \times \left(-\frac{2}{3}\,\hat{i} + \frac{1}{3}\,\hat{j} + +\frac{1}{3}\,\hat{k} \right) \right|$$

$$= \frac{1}{2} \left| \frac{\hat{i}}{6} + \frac{\hat{j}}{5} + \frac{\hat{k}}{6} \right| = \frac{1}{2} \sqrt{\frac{3}{36}} ; \quad \Delta = \frac{\sqrt{3}}{12}$$

$$\therefore (6\Delta)^2 = \frac{3}{4} = .75$$

2. Let S be the sample space of all 3×3 matrices with entries from the set $\{0,1\}$, Let the events E_1 and E_2 be given by

 $E_1 = \{A \in S : det A = 0\}$ and $E_2 = \{A \in S : sum of entries of A is 7\}$

If a matrix is chosen at random from S, then the conditional probability $P(E_1|E_2)$ equals

2.

Sample space = 2^9

$$P(E_{1}/E_{2}) = \frac{P(E_{1} \cap E_{2})}{P(E_{2})}$$

E₂: sum of entries 7

: '7' one and '2' zero

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{vmatrix} \text{ total } E_2 = \frac{9!}{7!2!} = \frac{8 \times 9}{2} = 36$$

$$(3\times3)2 = 18$$

$$P(E_1/E_2) = \frac{18}{36} = \frac{1}{2}$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 1(1) -1(-1)$$

- 3. Let $\omega \neq 1$ be a cube root of unity . Then the minimum of the set $\{|a + b\omega + c\omega^2|^2 : a, b, c\}$ distinct non-zero integers} equals _____
- Sol.

$$\left| a + b\omega + c\omega^2 \right|^2$$

=
$$(a + b\omega + c\omega^2)$$
 $(a + b\omega^2 + c\omega)$

=
$$\{a^2 + b^2 + c^2 - ab - bc - ca\}$$

$$= \frac{1}{2} \{ (a-b)^2 + (b-c)^2 + (c-a)^2 \}$$

$$= \frac{1}{2} \{ 1 + 1 + 4 \} = 3$$

Branch Predictor: motioniitjee.com/JeeBranchPredictor.aspx

H.O.: 394, Rajeev Gandhi Nagar, Kota Toll Free: 1800-212-1799 www.motion.ac.in | info@motion.ac.in

4. Let AP(a; d) denote the set of all the terms of an infinite arithmetic progression with first term α and common difference d > 0, If

 $AP(1;3) \cap AP(2;5) \cap AP(3;7) = AP(a;d)$ then a + d equals _____.

Sol. 157

First AP

$$a = 1$$
, common diff. = 3

Second AP

$$a = 2$$
, common diff. = 5

Third AF

$$a = 3$$
, common diff. = 7

Now on AP whose first term and common diff. is common of all three

$$\therefore$$
 1+(n-1)3 = 2+(m-1)5 = 3+(k-1)7

(i)
$$\frac{3n+1}{5} = m$$
 and $\frac{3n+2}{7} = k$

m and k are integer

So at
$$n = 18$$
 $m = 11$ and $k = 8$

first term of AP
$$\Rightarrow$$
 1+(18-1)3 = 52

Common diff. = LCM
$$(3,5,7) = 105$$

$$\therefore \quad a + d = 157$$

- 5. If $I = \frac{2}{\pi} \int_{-\pi/4}^{\pi/4} \frac{dx}{(1 + e^{\sin x})(2 \cos 2x)}$ then 27I² equals ______.
- Sol. 4

$$I = \frac{2}{\pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{(1 + e^{\sin x})(2 - \cos 2x)}$$

Apply King $x \rightarrow -x$

$$I = \frac{2}{\pi} \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{e^{\sin x}}{(1 + e^{\sin x})(2 - \cos 2x)} \; ; \; 2I = \frac{2}{\pi} \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x}$$

$$\therefore I = \frac{2}{\pi} \int_{0}^{\frac{\pi}{4}} \frac{dx}{1 + 2\sin^{2} x} = \frac{2}{\pi} \int_{0}^{\frac{\pi}{4}} \frac{\sec^{2} x dx}{1 - \tan^{2} x + 2\tan^{2} x} , \tan x = t$$

$$= \frac{2}{\pi} \int_{0}^{1} \frac{dt}{1 + 3t^{2}} = \frac{2}{3\pi} = \frac{2}{\sqrt{3\pi}} \tan^{-1} \left(\sqrt{3}t\right)_{0}^{1} = \frac{2}{\sqrt{3\pi}} \left(\frac{\pi}{3}\right) = \frac{2}{3\sqrt{3}} = I$$

$$\therefore 27 \times \frac{4}{27} = 4$$

- Let the point B be the reflection of the point A(2,3) with respect to the line 8x 6y 23 = 0. Let Γ_A and Γ_B be circles of radii 2 and 1 with centres A and B resepectively.Let T be a common tangent to the circles Γ_A and Γ_B such that both the circles are on the same side of T. If C is the point of intersection of T and the line passing through A and B, then the length of the line segment AC is _______.
- 6. 10

For B

$$\frac{x-2}{8} = \frac{y-3}{-6} = \frac{-2(16-18-23)}{64+36}$$

$$\frac{x-2}{8} = \frac{y-3}{6} = \frac{-2(-25)}{100}$$

$$\frac{x-2}{8} = \frac{y-3}{6} = \frac{1}{2}$$
 $\therefore x = 6 \text{ and } y = 6$

B(6, 6)

Now for 'C' external division in ratio $r_1:r_2$

$$a = \frac{2.6 - 1.2}{2 - 1} \quad b = \frac{2.6 - 1.3}{2 - 1}$$

$$a = 10, b =$$

∴ AC =
$$\sqrt{8^2 + 6^2}$$

$$=\sqrt{64+36}$$

$$=\sqrt{100}=10$$

Based on JEE Advanced'19

MARKS	FEE (After Scholarship)
140 above	Drona Residential Program Free
120 to 139	₹0
100 to 120	₹ 14,500
90 to 99	₹ 29,000
80 to 89	₹ 43,500
69 to 79	₹ 58,000
40 to 69	₹ 87,000

^{*}Scholarship Applicable at Kota Center Only

Based on JEE Main'19

JEE Main Percentile	English	Hindi	
JEE Maill Percentile	Fees (After Scholarship)		
99 & Above	Drona Residential Program Free		
97.5 To 99	₹0	₹0	
97 To 97.5	₹ 14,500	₹ 14,500	
96.5 To 97	₹ 29,000	₹ 29,000	
96 To 96.5	₹ 58,000	₹ 58,000	
95.5 To 96	₹ 65,250	₹ 65,250	
95 To 95.5	₹ 72,500	₹ 72,500	
93 To 95	₹ 87,000	₹ 87,000	
90 To 93	₹ 1,01,500	₹ 94,250	
85 To 90	₹ 1,08,750	₹ 1,01,500	
80 To 85	₹ 1,16,000	₹ 1,08,750	
75 To 80	₹ 1,30,500	₹ 1,23,250	

JEE MAIN Special Batch for Class 14th Repeaters

Flat 50% Scholarship

(Fee after Scholarship) **Only** ₹ **46,750**