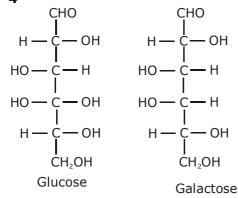

CHING PROGRAM

H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in | 🖂: info@motion.ac.in

1. The complex ion that will lose its crystal field stablization energy upon oxidation of its metal to + 3 state is :

(2) $[Fe(phen)_3]^{2+}$ (3) $[Ni(phen)_3]^{2+}$ (4) $[Co(phen)_3]^{2+}$ (1) $[Zn(phen)_3]^{2+}$ Sol. 2 This is the test of fe²⁺ ion

- The major product of the following addition reaction is $H_3C CH = CH_2 \xrightarrow{Cl_2/H_2O}$ 2.

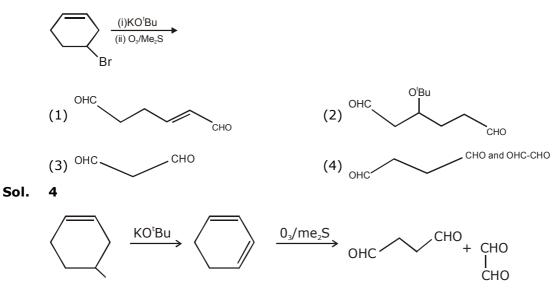

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4) / (4) /
--	---

Sol. 1

Sol.

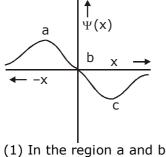
$$H_{3}C - CH = CH_{2} \xrightarrow{Cl_{2}/H_{2}O} \stackrel{H_{3}C - CH - CH_{2}}{OH CI}$$

- 3. Glucose and Galactose are having identical configuration in all the positions except position. (4) C – 4
- (1) C 5 (2) C - 2 (3) C - 3 Sol. 4


- The basic structural unit of feldspar, zeolities, mica, and asbestos is : 4.
 - (2) $\frac{(Si O)_{n}}{R}$ (R = Me) (1) SiO₂ (4) (SiO₃)²⁻ (3) (SiO₄)⁴⁻ 3 Conceptual

5. The major product (s) obtained in the following reaction is/are :

6. Peptization is a :


- (1) Process of converting a colloidal solution into precipitate
- (2) Process of converting precipitate into colloidal solution
- (3) Process of converting soluble particles to form colloidal solution
- (4) Process of bringing colloidal molecule into solution

Sol.

2

Conceptual

7. The electrons are more likely to be found :

(3) in the region a and c

(2) Only in the region a(4) only in the region c

Sol. 3

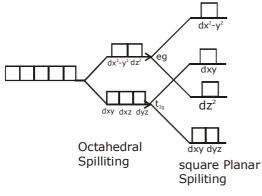
8. The correct set of species responsible for the photochemical smog is : (1) CO_2 , NO_2 , SO_2 and hydrocarbons (3) NO, NO_2 , O_3 , and hydrocarbons (4) N_2 , O_2 , O_3 , and hydrocarbons

Sol. 3

photochemical smog is caused by oxides of nitrogen and ozone and hydrocarbons

d_{vz}

- **9.** But-2-ene on reaction with alkaline $KMno_4$ at elevated temperature followed by acidification will give : (1) one molecule of CH_3CHO and one molecule of CH_3COOH
 - (2) $CH_3-CH-CH-CH_3$ (2) I I OH OH (3) 2 molecules of CH₃CHO
 - (4) 2 molecules of CH₃COOH
- Sol.

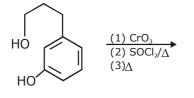

4

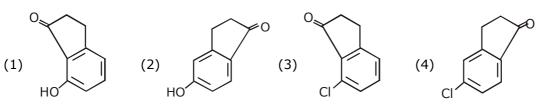
 $(i) KMnO_{4}$ $(ii) H^{+} 2CH_{3}COOH$

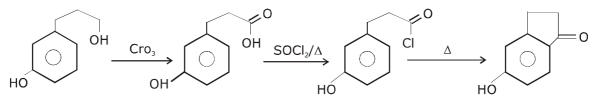
10. Complete removal of both the axial ligands (along the z-axis) from an octahedral complex leads to which of the following splitting patterns ? (relative orbital energies not on scale).

(3)
$$\begin{bmatrix} - & - & d_{xy} & & E \\ - & - & d_{z^2} & & (4) \\ - & - & d_{xz}, d_{yz} & & - & d_{xy} \end{bmatrix}$$

Sol. 3


- **11.** The metal that gives hydrogen gas upon treatment with both acid as well as base is:(1) magnesium(2) zinc(3) iron(4) mercury
- Sol. 2


 $\begin{array}{l} {Zn + \ 2HCl \rightarrow ZnCl_2 + \ H_2 \uparrow} \\ {Zn + \ 2NaOH \rightarrow Na_2ZnO_2 + \ H_2 \ \uparrow} \end{array}$



12. The major product of the following reaction is:

Sol. 2

An organic compound 'A' is oxidized with Na₂O₂ followed by boiling with HNO₃. The resultant solutin is then treated with ammonium molybdate to yield a yellow precipitate. Based on above observation, the element present in the given compound is:

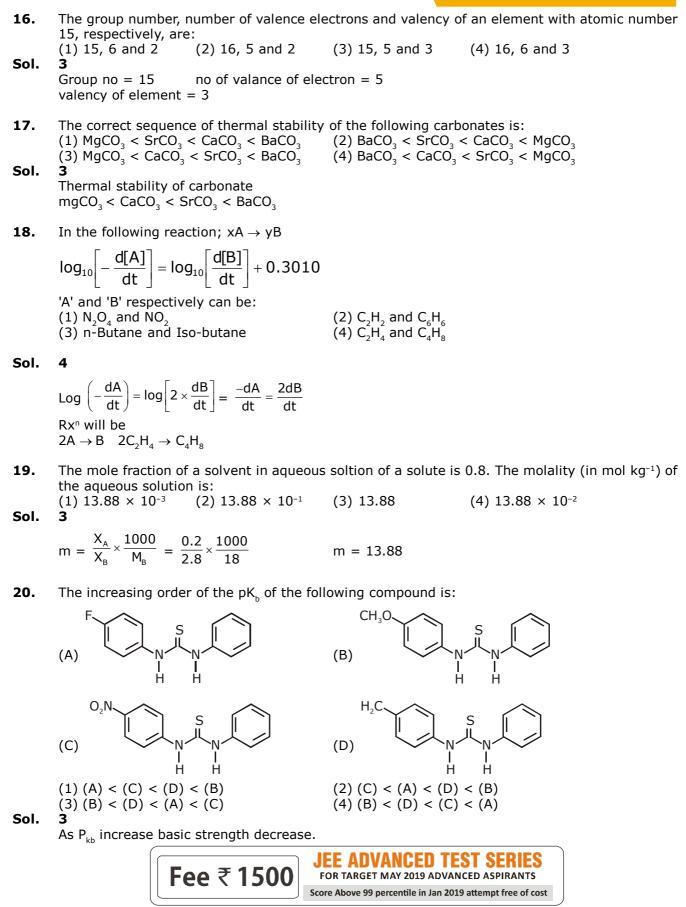
 (1) Fluorine
 (2) Phosphorus
 (3) Sulphur
 (4) Nitrogen

Sol. 3

This is the test of element phosphorus.

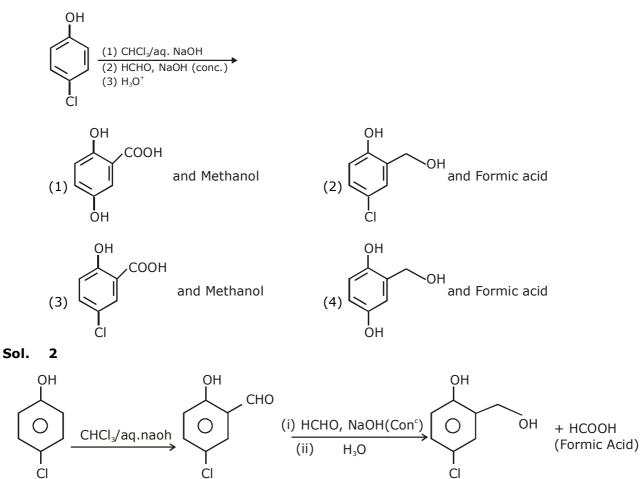
- **14.** What is the molar solubility of $AI(OH)_3$ in 0.2 M NaOH solution? Given that, solubility product of $AI(OH)_3 = 2.4 \times 10^{-24}$: (1) 3×10^{-19} (2) 12×10^{-21} (3) 12×10^{-23} (4) 3×10^{-22}
- Sol. 4

 $K_{sp} = [AI^{+3}] [OH^{-}]^{3}$ 2.4 × 10⁻²⁴ = [AI^{+3}] (0.2)^{3} $\frac{2.4 \times 10^{-24}}{8 \times 10^{-3}} = [AI^{+3}] = 3 \times 10^{-22}$


15. Given:

 $\begin{array}{ll} \text{Co}^{3+} + e^- \rightarrow \text{Co}^{2+}; \ \text{E}^\circ = +1.81\text{V} \\ \text{Pb}^{4+} + 2e^- \rightarrow \text{Pb}^{2+}; \ \text{E}^\circ = +1.67\text{V} \\ \text{Ce}^{4+} + e^- \rightarrow \text{Ce}^{3+}; \ \text{E}^\circ = +1.61\text{V} \\ \text{Bi}^{3+} + 3e^- \rightarrow \text{Bi}; \ \text{E}^\circ = +0.20\text{V} \\ \text{Oxidizing power of the species will increase in the order:} \\ (1) \ \text{Co}^{3+} < \text{Ce}^{4+} < \text{Bi}^{3+} < \text{Pb}^{4+} \\ (3) \ \text{Co}^{3+} < \text{Pb}^{4+} < \text{Ce}^{4+} < \text{Bi}^{3+} \\ \end{array}$

Sol. 2

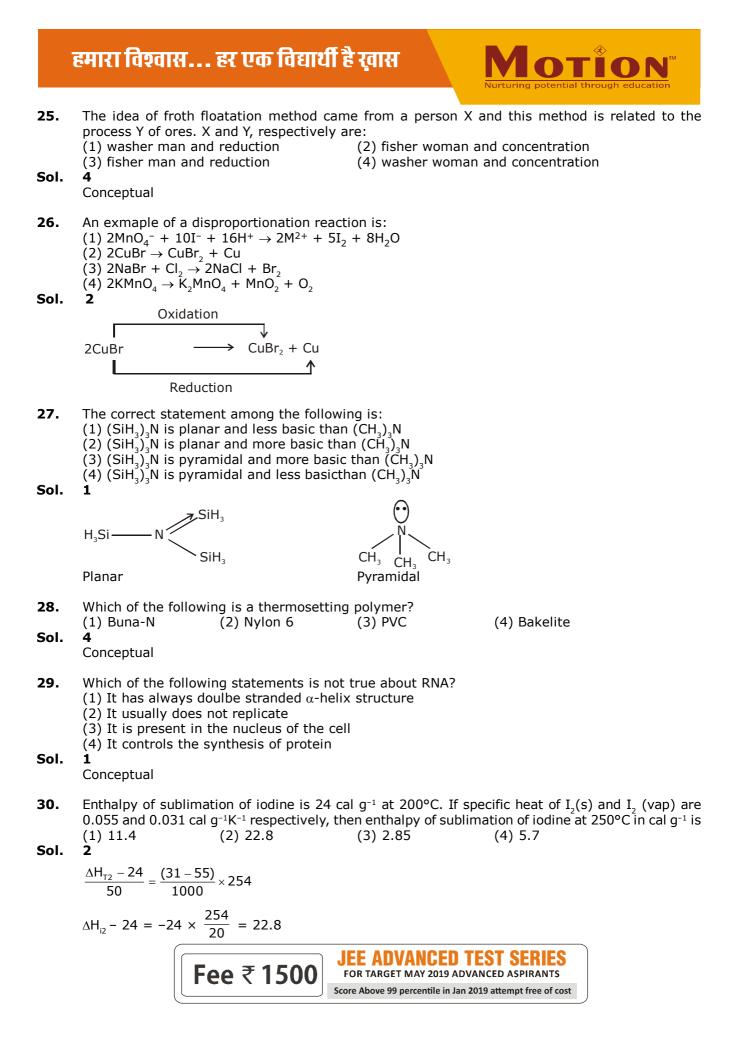


- **21.** 5 moles of AB₂ weigh 125×10^{-3} kg and 10 moles of A₂B₂ weight 300×10^{-3} kg. The molar mass of A(M_A) and molar mass of B(M_B) in kg mol⁻¹ are: (1) M_A = 5×10^{-3} and M_B = 10×10^{-3} (2) M_A = 50×10^{-3} and M_B = 25×10^{-3} (3) M_A = 25×10^{-3} and M_B = 50×10^{-3} (4) M_A = 10×10^{-3} and M_B = 5×10^{-3}
- Sol.
- **22.** The major products of the following reaction are:

23. An ideal gas is allowed to expand from 1L to 10L against a constant external pressure of 1 bar. The work done in kJ is:

(1) -0.9 (2) +10.0 (3) -2.0 (4) -9.0
1

$$w = -p_{ext} \Delta v = -1 \text{ bar } [9 \text{ lit}] = -900 \text{ J} = -0.9 \text{ k} \text{ J}$$


Sal

24. An element has a face-centred cubic (fcc) structure with a cell edge of a. The distance between the centres of two nearest tetrahedral voids in the lattice is:

(1)
$$\frac{a}{2}$$
 (2) $\sqrt{2}a$ (3) $\frac{3}{2}a$ (4) a

Sol. 1 Fact

Total Students Above 99.9 percentile - 17 Total Students Above 99 percentile - 282 Total Students Above 95 percentile - 983

95 percentile

% of Students Above $\frac{983}{2529} = 27.78\%$ 3538

Scholarship on the Basis of 12th Class Result

Marks PCM or PCB	Hindi State Board	State Eng OR CBSE
70%-74%	30%	20%
75%-79%	35%	25%
80%-84%	40%	35%
85%-87%	50%	40%
88%-90%	60%	55%
91%-92%	70%	65%
93%-94%	80%	75%
95% & Above	90%	85%

New Batches for Class 11th to 12th pass 17 April 2019 & 01 May 2019

हिन्दी माध्यम के लिए पुयक बैच

Scholarship on the Basis

of JEE Main Percentile		Medium	Medium
Score	JEE Mains Percentile	Scholarship	Scholarship
225 Above	Above 99	Drona Free (Limited Seats)	
190 to 224	Above 97.5 To 99	100%	100%
180 to 190	Aboev 97 To 97.5	90%	90%
170 to 179	Above 96.5 To 97	80%	80%
160 to 169	Above 96 To 96.5	60%	60%
140 to 159	Above 95.5 To 96	55%	55%
74 to 139	Above 95 To 95.5	50%	50%
66 to 73	Above 93 To 95	40%	40%
50 to 65	Above 90 To 93	30%	35%
35 to 49	Above 85 To 90	25%	30%
20 to 34	Above 80 To 85	20%	25%
15 to 19	75 To 80	10%	15%

English

Hindi

प्री-मेडिकल में छात्राओं को 50% छात्रवृत्ति सैन्य कर्मियों के बच्चो के लिए 50% छात्रवृत्ति |