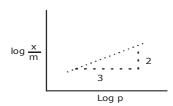


NEET/AIIMS NTSE/OLYMPIADS

(Under 50000 Rank)

(since 2015)

(5th to 10th class)

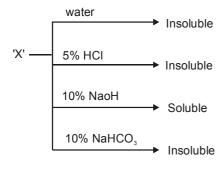

Toll Free: 1800-212-1799

H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |⊠: info@motion.ac.in

- **1.** Assertion: Ozone is destroyed by CFCs in the upper stratosphere. Reason: Ozone holes increase the amount of UV radiation the earth.
 - (1) Assertion and reason are incorrect.
 - (2) Assertion and reason are both correct, and the reason is the correct explanation for the assertion.
 - (3) Assertion and reason are correct but, the reason is not the explanation for the assertion.
 - (4) Assertion is false, but the reason is correct.
- Sol. (3) Fact
- Adsorption of a gas follows freundlich adosorbed isotherm. x is the mass of the gas adsorbed on mass m of the adsorbent. The plot $\log \frac{x}{m}$ versus $\log p$ is shown in the given graph. $\frac{x}{m}$ is proportional to :

Sol.

(3) P^{3/2}


$$\log\left(\frac{x}{m}\right) = \frac{2}{3}\log(P) + \text{const.}$$

$$\frac{x}{m} \propto P \frac{2}{3}$$

$$= P\frac{2}{3}$$

(1) P³

3. An organic compound 'X' showing the following solubility profile is :

- (1) Benzamide
- (2) Oleic acid
- (3) o-Toluidine
- (4) m-Cresol

Fee ₹ 1500

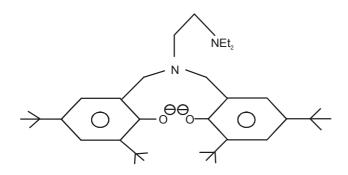
JEE ADVANCED TEST SERIES

FOR TARGET MAY 2019 ADVANCED ASPIRANTS

Sol. (4)

Both m-(re so) and olek and form salt with 10% NaOH, but m=(re so) salt is soluble whereas oeic acid salt is insoluble due to very long unsaturated carbon chain.

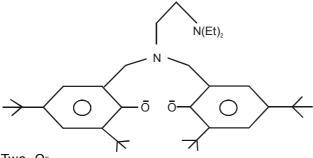
- **4.** The correct order of hydration enthapies of alkali metal ions is :
 - (1) $Li^+ > Na^+ > Cs^+ > Rb^+$
- (2) $Na^+ > Li^+ > K^+ > Rb^+ > Cs^+$
- (3) $Li^+ > Na^+ > K^+ > Rb^+ > Cs^+$
- (4) $Na^+ > Li^+ > K^+ > Cs^+ > Rb^+$


Sol. (3)

$$H.E \propto \frac{Ch arg e}{Size}$$

 $Li^+ > Na^+ > K^+ > Rb^+ > Cs^+$

 $L \rightarrow R$ charge = const. size \uparrow :: $HE \downarrow$


5. The following ligand is:

- (1) hexadentate
- (3) bidentate

- (2) tridentate
- (4) tetradentate

Sol. (4)

- Two _O-Two N
- **6.** Maltose on treatment with dilute HCI
 - (1) D-Glucose and D-Fructose
 - (3) D-Fructose

- (2) D-Glucose
- (4) D-Galactose

Sol. (1)

Maltose — dil.HCl → D – Golu cos e

Fee ₹ 1500 JEE AUV

JEE ADVANCED TEST SERIES

FOR TARGET MAY 2019 ADVANCED ASPIRANTS

- 7. With respect to an ore, Ellingham diagram helps to predict the feasibility of its.
 - (1) Thermal reducation

(2) Electrolysis

- (3) Vapour phase refining
- (4) Zone refining

Sol. (1

Ellingham diagram in a graph between ΔG^{o}_{f} of oxide/mole O_{2} vs temp. which help to predict suitable reducing agent for therma reduction of oxide.

8. Given that $E_{O_2/H_2O}^{\Theta} = 1.23 \text{ V}$;

$$E^{\Theta}_{S_2O_8^{2^-}/SO_4^{2^-}} = 2.05V$$

$$E_{Br_{3}/Br^{-}}^{\Theta} = 1.09V$$

$$E^\Theta_{Au^{3+}/Au}=1.4V$$

The strongest oxidizing agent is:

 $(1) O_2$

(2) Au³⁺

(3) Br₂

(4) $S_2 O_8^{2-}$

Sol. (4)

Species having highest value of SRP, will be strongest oxidising agent.

9. An organic compound neither reacts with natural ferric chloride solution nor with fehling solution. it however, reacts with Grignard reagent and gives positive iodoform test. The compound is:

$$(1) \begin{array}{|c|c|} \hline OH \\ \hline CH_3 \\ \hline C_2H_6 \\ \hline \end{array}$$

Sol. (1)

$$CH_3$$
 $C - C_2H_5$

JEE ADVANCED TEST SERIES

FOR TARGET MAY 2019 ADVANCED ASPIRANTS

- **10.** Diborane (B_2H_6) reacts independently with O_2 and H_2O to produce, resopectively:
 - (1) HBO₂ and H₃BO₃

(2) B_2O_3 and $[BH_4]^{-1}$

(3) B_2O_3 and H_3BO_3

(4) $H_3^2BO_3$ and B_2O_3

Sol. (3)

$$B_2H_6 + O_2 \longrightarrow B_2O_3 + H_2O$$

 $B_2H_6 + H_2O \longrightarrow H_3BO_3 + H_2$

- **11.** For silver, $C_p(J K^{-1} mol^{-1}) = 23 + 0.01T$. If the temperature (T) of 3 moles of silver is raised from 300 K to 1000 K at 1 atm pressure, the value of ΔH will be close to :
 - (1) 16 KJ

(2) 21 KJ

(3) 62 KJ

(4) 13 KJ

Sol. (3)

$$\Delta H = \int nc_p dt$$

$$\Delta H = 3 \times \int \left(23 + \frac{T}{100}\right) dt$$

$$\Delta H$$
 = $3 \left[23 \times (1000 - 300) + \frac{1}{2} (1000 - 300)(1000 + 300) \right]$

$$= 3[23 \times 700 + 7 \times 650]$$

$$\Delta H = 3 \times [230 + 65] \times 70$$

$$\Delta H = 62 \text{ KJ}$$

- 12. The vapour pressures of pure liquids A and B are 400 and 600 mmHg, respectively at 298 K On mixing the two liquids, the sum of their initial volume is equal of the volume of the final mixture. The mole fraction of liquid B is 0.5 in the mixture, The vapour pressure of the final solution, the mole fractions of components A and B in vapour phase, respectively are:
 - (1) 500 mmHg. 0.5,0.5
 - (2) 450 mmHg.0.5,0.5
 - (3) 450 mmHg, 0.4,0.6
 - (4) 500 mmHg, 0.4, 0.6

Fee ₹ 1500

Sol. (4)

$$P_{Total} = x_A P_A^O + x_B P_B^O = \frac{400 + 600}{2} = 500$$

$$y_A \times P_{Total} = x_A \times P_A^O$$

$$y_A \times 500 = \frac{1}{2} \times 400$$

$$y_A = \frac{2}{5}$$

$$y_B = \frac{3}{5}$$

- 13. Which is wrong with respect to our responsibility as a human being to protect our environment?
 - (1) Restricting the use of vehicles
 - (2) Setting up compost tin in gardens.
 - (3) Using plastic bags.
 - (4) Avoiding the use of floodlighted facilities
- Sol.

Plastic in a non-biodegradable pollutant thus its use is harmfull to the environment.

If solublity product of $Zr_3(PO_4)_4$ is denoted by K_{sp} and its molar solubility is denoted by S, then 14. which of the following relation between S and K_{sn} is correct?

(1)
$$S = \left(\frac{K_{sp}}{6912}\right)^{1/7}$$
 (2) $S = \left(\frac{K_{sp}}{929}\right)^{1/9}$ (3) $S = \left(\frac{K_{sp}}{216}\right)^{1/7}$ (4) $S = \left(\frac{K_{sp}}{144}\right)^{1/6}$

(2)
$$S = \left(\frac{K_{sp}}{929}\right)^{1/5}$$

$$(3) S = \left(\frac{K_{sp}}{216}\right)^{1/7}$$

(4)
$$S = \left(\frac{K_{sp}}{144}\right)^{1/6}$$

Sol. (1)

$$Zr_3(P_4^0)_4 \implies \frac{3Zr^{+4} + P_4^{0^{3-1}}}{3s}$$

$$K_{SP} = (3s)^3 (4s)^4$$

$$S = \left[\frac{K_{SP}}{6912} \right]^{\frac{1}{7}}$$

15. The major product of the following reaction is:

Sol. (2)

$$\begin{array}{c} \text{OCH}_3 \\ \\ \text{HBr (excess)} \\ \\ \text{CH=CH}_2 \end{array} \begin{array}{c} \text{OH} \\ \\ \text{CH=CH}_3 \\ \\ \text{Br} \end{array}$$

- **16.** The size of the iso-electronic species Cl⁻ Ar and Ca²⁺ is affected by :
 - (1) Principal quantum number of valence shell
 - (2) electron-electron interaction in the outer orbitals
 - (3) nulcear charge
 - (4) azimuthal quantum number of valence shell
- **Sol.** (3)

Fact

Size
$$\propto \frac{1}{\text{Nuclear Charge}}$$

17. The major product of the following reaction is :

Sol. (4)

- 18. In order to oxidise a mixture of one mole of each of FeC_2O_4 , $Fe_2(C_2O_4)_3$, $FeSO_4$ and $Fe_2(SO_4)_3$ in acidic medium, the number of moles of $KMnO_4$ required is :
 - (1) 1.5
- (2) 2
- (3) 3
- (4) 1

Sol. (2)

Equivalents of $KMnO_4$ = Total Equivalents of reactants $5 \times moles$ of $KMnO_4$ = $1 \times 3 + 1 \times 6 + 1 \times 1$ $5 \times moles$ of $KMnO_4$ = 10 mol

19. Coupling of benzene diazonium chloride with 1 - naphthol in alkaline medium will give :

$$(1) \qquad \qquad (2) \qquad (3) \qquad (4) \qquad (5) \qquad (5) \qquad (6) \qquad (6) \qquad (6) \qquad (7) \qquad (7$$

Sol. (2)

20. For the reaction $2A + B \rightarrow C$, the values of initial rate at diffrent reactant concentrations are given in the table below. The rate law for the reaction is :

	[A](mol L-1)	[B](mol L-1)	Initial Rate (mol L ⁻¹ S ⁻¹)
	0.05	0.05	0.045
	0.10	0.05	0.090
	0.20	0.10	0.72

(1) Rate = $k[A]^2[B]^2$

(2) Rate = $k[A][B]^2$

(3) Rate = k[A][B]

(4) Rate = $k[A]^2[B]$

- **Sol.** (2)
 - $0.045 = K(0.05)^{x} (0.05)^{y} \dots (1)$
 - $0.090 = K(0.1)^{x} (0.05)^{y} \dots (2)$
 - $0.72 = K(0.2)^{x} (0.1)^{y}$ (3)
 - $(1) \div (2)$
- $(2) \div (3)$
- x = 1 y = 2
- \therefore Rate = K [A][B]²
- **21.** The correct order of the spin-only magnetic moment of metal ions in the following low-spin complexes, $[V(CN_6)]^{4-}$, $[Fe(CN)_6]^{4-}$, $[Ru(NH_3)_6]^{3+}$, and $[Cr(NH_3)_6]^{2+}$, is:
 - (1) $V^{2+} > Ru^{3+} > Cr^{2+} > Fe^{2+}$
- (2) $Cr^{2+} > V^{2+} > Ru^{3+} > Fe^{2+}$
- (3) $V^{2+} > Cr^{2+} > Ru^{3+} > Fe^{2+}$
- (4) $Cr^{2+} > Ru^{3+} > Fe^{2+} > V^{2+}$

- **Sol.** (3)
 - $[(CN)_6]^{4-}$
- V^{+2} 3d³
- n = 3

- $[(CN)_6]^{4-}$
- Fe⁺² 3d⁶
- 11 11 11
- n = 0

Back pairing

- $[(NH_3)_6]^{3+}$
- Ru³⁺ 4d⁵
- 11 11 1
- n = 1

Back pairing

- $[(NH_3)_6]^{2+}$
- Cr²⁺ 3d⁴
- 11 1 1
- n = 2

Back pairing

- $\therefore V^{2+} > Cr^{2+} > Ru^{3+} > Fe^{2+}$
- n = 3
- **22.** The lathanide ion that would show colour is :
 - (1) Sm³⁺
- (2) Gd³⁺
- (3) Lu³⁺
- (4) La³⁺

Sol. (1)

Sm⁺³ in a yellow ion

 $\begin{array}{ccc}
 La^{3+} & 4f \\
 Lu^{3+} & 4f^{14}
 \end{array}
 \left.\begin{array}{c}
 Colour less \\
 4f^{7}
 \end{array}\right\}$

- 23. 100 mL of a water sample contains 0.81 g of calcium bicrabonate and 0.73 g of magnesium bicarbonate. The hardness of this water sample expressed in terms of equivalents of CaCO₃ is : (Molar mass of calcium bicarbonate is 162 g mol⁻¹ and magnesium bicarbonate is 146 g mol⁻¹)
 - (1) 100 ppm

(2) 1,000 ppm

(3) 10,000 ppm

(4) 5,000 ppm

Sol. (3)

Equ. of $CaCO_3$ = equ. of $Ca(HCO_3)_2$ + equ. of $Mg(HCO_3)_2$

$$= \left[\frac{0.81}{162} \times 2 + \frac{0.73}{146} \times 2 \right]$$

 $2 \times \text{moles of CaCO}_3 = \frac{1}{100} \times 2$

Mass of $CaCO_3 = 1$ gm in 100 ml

$$\therefore \text{ Hardness} = \frac{1}{100} \times 10^6 = 10^4 \text{ ppm}$$

24. The quantum number of four electrons are given below :

n = 4, l = 2, $m_i = -2$, $m_s = -1/2$

 $n = 3, I = 2, m_i = 1, m_s = +1/2$

n = 4, l = 1, $m_l = 0$, $m_s = +1/2$

n = 3, l = 1, $m_s = 1$, $m_s = -1/2$

The correct order of their increasing enegies will be :

(1) IV < III < II < I

(2) IV < II < III < I

(3) I < III < II < IV

(4) I < II < III < IV

- **Sol.** (2)
 - (i) 4d (ii) 3d
- (iii) 4p
- (iv) 3p

energy order

3p < 3d < 4p < 4d

Ans. IV < II < III < I

25. The major product of the following reaction is :

Fee ₹ 1500

JEE ADVANCED TEST SERIES

FOR TARGET MAY 2019 ADVANCED ASPIRANTS

Sol. (2)

$$\begin{array}{c}
O \\
Br \\
\hline
NaBH_4
\end{array}$$

$$\begin{array}{c}
O \\
CH \\
CH_2
\end{array}$$

$$\begin{array}{c}
CH \\
CH_2
\end{array}$$

$$\begin{array}{c}
+ Br^{-1}
\end{array}$$

26. The IUPAC name of the following compound is:

H3C-CH-CH-CH2-COOH

- (1) 4,4-Dimethyl-3-hydroxybutanoic acid (2) 3-Hydroxy-4-methylpentanoic acid
- (3) 2-Methyl-3-hydroxypentan-5-oic acid (4) 4-Methyl-3-hydroxypentanoic acid
- Sol.

$$CH_3$$
 OH I I I CH_3 – CH – CH – CH – $COOH$

3-hydroxy-4-methyl pentanoic acid

- 27. Element 'B' forms ccp structure and 'A' occupies half of the octahedral voids, while oxygen atoms occupy all the tetrahedral voids, The structure of bimetallic oxide is :
 - $(1) A_4 B_2 O$
- (2) $A_{2}B_{2}O$
- (3) A₂BO₄
- (4) AB₂O₄

Sol. (4)

$$A_{\frac{1}{2}\times 4}B_4O_8 + A_2B_4O_8 \to AB_2O_4$$

- 28. In the following compounds, the decreasing order of basic strength will be :
 - (1) $(C_2H_5)_2NH > NH_3 > C_2H_5NH_2$
- (2) $NH_3 > C_2H_5NH_2 > (C_2H_5)_2NH$
- (3) $C_2H_5NH_2 > NH_3 > (C_2H_5)_2NH$
 - $(4) (C_2H_5)_2NH > C_2H_5NH_2 > NH_3$
- Sol. (4)

$$(C_2H_5)_2 NH > C_2H_5NH_2 > NH_3$$

- 29. Which one of the following equations does not correctly represent the first law of thermodynamics for the given processes involving an ideal gas? (Assume non-expansion work is zero)
 - (1) Cyclic process : q = -w
 - (2) Adiabatic process : $\Delta U = w$
 - (3) Isochoric process : $\Delta U = q$
 - (4) Isothermal process : q = -w
- Sol. (2)

Theoritical

- 30. Which of the following amines can be prepared by Gabriel phthalimide reaction?
 - (1) n-butylamine

(2) neo-pentylamine

(3) t-butylamine

(4) triethylamine

Sol.

Gabrial phthalimide reaction is used to formatin of 1° amine.

Fee ₹ 1500

JEE ADVANCED TEST SERIES

FOR TARGET MAY 2019 ADVANCED ASPIRANTS

मोशन ने बनाया साधारण को असाधारण

JFE Main Result Jan'19

4 RESIDENTIAL COACHING PROGRAM (DRONA) STUDENTS ABOVE 99.9 PERCENTILE

Total Students Above 99.9 percentile - 17

Total Students Above 99 percentile - 282

Total Students Above 95 percentile - 983

95 percentile

% of Students Above $\frac{983}{2539} = 27.78\%$

Scholarship on the Basis of 12th Class Result

Marks PCM or PCB	Hindi State Board	State Eng OR CBSE
70%-74%	30%	20%
75%-79%	35%	25%
80%-84%	40%	35%
85%-87%	50%	40%
88%-90%	60%	55%
91%-92%	70%	65%
93%-94%	80%	75%
95% & Above	90%	85%

New Batches for Class 11th to 12th pass 17 April 2019 & 01 May 2019

हिन्दी माध्यम के लिए पुचक बैच

Scholarship on the Basis	
of JEE Main Percentile	

of JEE Mai	in Percentile	Medium	Medium	
Score	JEE Mains Percentile	Scholarship	Scholarship	
225 Above	Above 99	Drona Free (L	Orona Free (Limited Seats)	
190 to 224	Above 97.5 To 99	100%	100%	
180 to 190	Aboev 97 To 97.5	90%	90%	
170 to 179	Above 96.5 To 97	80%	80%	
160 to 169	Above 96 To 96.5	60%	60%	
140 to 159	Above 95.5 To 96	55%	55%	
74 to 139	Above 95 To 95.5	50%	50%	
66 to 73	Above 93 To 95	40%	40%	
50 to 65	Above 90 To 93	30%	35%	
35 to 49	Above 85 To 90	25%	30%	
20 to 34	Above 80 To 85	20%	25%	
15 to 19	75 To 80	10%	15%	
15 to 19	15 10 80	10%	15%	

English

Hindi

सैन्य कर्मियों के बच्चो के लिए 50% छात्रवृत्ति |

प्री-मेडिकल में छात्राओं को 50% छात्रवृत्ति