+91-8003899588, +91-9314187482

1800-212-1799 (Toll Free)

JEE Main and JEE Advanced Syllabus of Ray Optics

There are several ways to think about light in physics. One very useful way is to think of it in terms of rays. That is, to imagine light to be traveling in very narrow beams. When you do that, we say that you are modeling light as rays. This method allows one to develop an understanding of several light phenomena including common reflections and refractions.
An image in which the rays of light radiating from a point on the object converge to a physical point in space is called a real image. Parallel to this is the concept of a virtual image. When the rays from an object point never actually converge towards a different physical point in space but simply appear to the eye as if they were radiating from an image point, we call the image a virtual image.
Ray Optics covers a large variety of topics like the refractive index, mirror formula, lens formula, refraction at spherical surfaces, refraction through prism etc. We shall give a brief outline of these topics as they have been discussed in detail in the coming sections:

Reflection is a simple yet important concept. Almost all objects in the world reflect a certain amount of light falling on them. When light falls on the object, it gets reflected and this is the color that is visible to the human eye. The ray that falls on the surface is termed as the incident ray and the angle that it makes with the normal is called the incident angle. The normal is the imaginary line that is perpendicular to the surface at the point where it is intersected by the incident ray. This ray again springs back as the reflected ray and it has the same angle of reflection as the angle of incidence from the normal.
Hence, from this discussion, we obtain the law of reflection which states that
Angle of incidence = Angle of reflection
One point to be noted here is that all these lines including the incident ray, the reflected ray and the normal to the surface lie in the same plan. Reflection can broadly be categorized as Specular Reflection and Diffuse Reflection.
Specular Reflection: When light rays which are in the form of parallel lines strike against a smooth or a plane surface and then get reflected again in the form of parallel lines, then this form of reflection is called as the specular reflection. The following figure will prove useful in furthering clearing the concept of this kind of reflection:

Diffuse Reflection: When light rays fall in the form of parallel lines on a rough surface and as result they get reflected in all directions, such type of distortion is termed as diffuse reflection.

The concept of refraction and the index of refraction are of immense importance. If light travels from point A to point B, then its speed will be highest if it travels in a straight line. But it has to pass through various materials then it will pass through them at different speeds and the motion will not be in a straight line. Hence, when it enters a new medium, it gets bent a bit and this bending is termed as refraction. The human eye always assumes light to be traveling in a straight line and hence when an object appears to be bent slightly due to refraction, we assume that the object is bent and not the light.
The index of refraction depends on the medium through which light passes. The speed of light is more in medium which are less optically dense and less in more optically dense mediums. The mathematical formula for calculation of index of refraction is:
n = Speed of light in vacuum/ Speed of light in the medium = c/v
The index of refraction is represented by the letter ‘n’ and denotes the angle at which the light bends. When light travels from a medium with refractive index n1 to the other with refractive index n2, the relation between the angle of incidence θ1 and the angle of refraction θ2 is given by
n1sin θ1 = n2 sin θ2
Since the speed of light in air is almost the same as the speed of light in a vacuum, so in most of the cases a value of one for the index of refraction of air. We have listed the indices of refraction for various substances in the table given below:

Substance (at 20° C) Index of refraction, n
Sodium Chloride 1.544
Water 1.333
Benzene 1.501

Refraction through a glass prism:
When the visible white light passes through an equilateral prism, it experiences dispersion. It was proposed by Newton that it was possible to divide the white light into its various component colors with the help of an isosceles prism having equal sides and angles. As soon as the light ray falls on the surface of a dispersing prism, on entering it gets refracted and then passes through the glass unless it reaches the second boundary. Again the light gets refracted then it follows a new path on exiting. When the waves pass through prism, they get deviated by a certain angle which can be calculated. We obtain the angle of minimum deviation when the angle at which the light wave enters the prism permits the beam to pass through the glass in a parallel direction to the base.

As the values of the refractive index of a prism are increased, it also leads to an increase in the angle of deviation of light passing through prism. Refractive index is also affected by wavelength of light. The shorter wavelengths are refracted at greater angles while the longer wavelengths like red light are refracted at small angles. This variation in the angle of deviation in prism is termed as dispersion.
Ray optics discusses topics like refraction of light through prism or the angle of prism and it is quite different form Wave Optics. Ray theory does not describe phenomena such as interference and diffraction, which require wave theory (involving the phase of the wave).
Difference between Deviation and Refraction
Deviation and refraction are two concepts which are quite inter-related and often confused with each other. But there is a difference between the two. When light enters a different medium, the change that occurs in its path like bending or turning is termed as refraction. Deviation refers to the amount of this deflection in the path of light when it enters some other medium.